Variation in growth of Brown-headed Cowbird (Molothrus ater) nestlings and energetic impacts on their host parents

A. Marm Kilpatrick

Abstract: I tested several hypotheses about the plasticity of avian growth by comparing growth of Brown-headed Cowbird (Molothrus ater) nestlings in 20 different host species. Growth of cowbird nestlings was not strongly correlated with host adult mass and nearly all hosts were able to provision cowbirds with enough food to grow at nearly the highest observed rate. Cowbird growth was positively correlated with site latitude (which negatively covaried with maximum temperature) and negatively correlated with the nesting period of the host species. The metabolizable energy expenditure of cowbird and host nestlings was estimated as an approximate measure of the food provisioned by parents. As host adult mass varied from 6 to 113 g, one cowbird nesting was equivalent to 3.4–0.56 host nestlings in terms of peak daily energy intake. Cowbird nestlings impose a substantial energetic demand on smaller host parents that may reduce their future survival or fecundity. The quantity of energy delivered to parasitized nests demonstrates that parents are often willing to provision nests at a much higher rate than for an average clutch of their own young.

Résumé: J’ai éprouvé plusieurs hypothèses sur la plasticité de la croissance des oiseaux en comparant la croissance des oisillons du vacher à tête brune (Molothrus ater) dans les nids de 20 espèces hôtes. La croissance des vachers n’était pas en corrélation étroite avec la masse des hôtes adultes et presque tous les oiseaux hôtes ont été en mesure de procurer suffisamment de nourriture aux oisillons parasites pour assurer leur croissance à un taux voisin du plus haut taux observé. La croissance des vachers s’est révélée en corrélation positive avec la latitude du site de nidification (elle-même en corrélation négative avec la température maximale) et en corrélation négative avec la période de nidification de l’espèce hôte. La dépense d’énergie métabolisable des oisillons du vacher et de ceux de l’espèce hôte équivalait approximativement à la quantité de nourriture apportée par les parents. La masse des hôtes adultes se situait entre 6–113 g et la consommation quotidienne maximale d’énergie d’un oisillon parasite équivalait à 3,4–0,56 fois celle des oisillons de l’espèce hôte. Les oisillons du vacher imposent une dépense énergétique importante aux parents d’espèces hôtes de petite taille, ce qui peut diminuer leur survie ou leur fécondité futures. La quantité d’énergie fournie aux nids parasités démontre que les parents sont souvent prêts à investir plus d’efforts à ravitailler les nids parasites qu’à nourrir une couvée moyenne de leurs propres oisillons.

Introduction

Growth in altricial avian species is regulated by two factors, the rate at which food is delivered to the young and the quality of that food (Boag 1987; Johnston 1993; Starck and Ricklefs 1998[a]). The rate at which food is delivered to the young reflects a trade-off between the foraging effort of the parent, which may result in decreased survivorship or future fecundity of the parents (Dijkstra et al. 1990; Siikamaki et al. 1997; but see Gustafsson and Sutherland 1988; Pettifor 1993), and the fitness gained through feeding the offspring. This trade-off can result in parent–offspring conflict (Trivers 1974) because the benefit to the offspring of additional provisioning by the parents may not lead to maximization of the parents’ fitness. Extreme examples of this are cases of brood parasitism in which the offspring are unrelated to the parent. In this situation one would expect the offspring to attempt to secure as much food as the parents are willing to provide. Studying the growth of parasitic nestlings offers an opportunity to examine the plasticity of nesting growth in response to different feeding rates of various host species. In addition, the impact of parasitic nestlings on host parents of different sizes and foraging abilities can be estimated in order to understand impacts on parental fitness.

Several studies have examined the plasticity of development in altricial passerines and the degree to which nesting growth is stunted by periods of food shortage (Lack and Lack 1951; Emlen et al. 1991; Lepczyk and Karasov 2000). Growth of nestlings of generalist parasites such as the Shiny Cowbird (Molothrus bonariensis) and Brown-headed Cowbird (Molothrus ater) represents a situation in which the young grow and develop in nests with parents that vary in body size, diet, and foraging ability, which may lead to differences in the rate of provisioning (Sæther 1994). The degree to which the growth of cowbird nestlings reflects characteristics of their host parents or the nesting environment is only beginning to be studied. Wiley (1986) examined the growth of Shiny Cowbird chicks in three host species varying from 12.8 to 74 g in body mass and found that the mass of cowbird nestlings at fledging increased with the mass of the host. Similarly, Kleven et al. (1999) found that Cuckoo (Cuculus
canorus) nestlings grew faster and fledged heavier in the larger (28.5 vs. 12 g) of two hosts. In contrast, Weatherhead (1989) found the growth rates of Brown-headed Cowbird nestlings to be nearly identical in hosts weighing 9.5 and 52.6 g. Clearly, understanding the relationship between host mass and the growth rate of parasitic young requires substantially larger sample sizes of host species in order to remove the confounding effects of taxonomy, diet, foraging style, resources, and other factors.

Several host species fail to fledge Brown-headed Cowbird (hereinafter cowbird) nestlings and this has been attributed to protein or nutrient deficiencies in the granivorous or frugivorous diet that these hosts provide to their nestlings (Rothstein 1976; Middleton 1991; Kozlovic et al. 1996). Hosts that feed their young an insectivorous diet may fail to fledge cowbirds for other reasons that may be related to interruptions in feeding (e.g., Tree Swallows, *Tachycineta bicolor*; Mills 1988). Analysis of the growth patterns of cowbird nestlings across a range of hosts may illuminate the reasons for poor growth in these otherwise suitable host species.

For hosts that feed their young a primarily insectivorous diet, one would expect the growth of the nestlings to increase with the rate at which food is delivered up to the physiological maximum rate at which the nestlings can process food, or deposit and mature tissue (Lilja et al. 1985; Konarzewski 1988; Ricklefs et al. 1994). Since the foraging and provisioning rate of parents has been shown to be positively and tightly correlated with their mass (Bryant and Westerterp 1980; Sæther 1994), we might expect an asymptotic relationship between adult mass of the host and growth of cowbird nestlings. Below I test the hypothesis that cowbird growth increases with host adult mass, as we would expect if smaller hosts do not provision cowbirds sufficiently.

One factor that might counter this pattern, and lead to decreased growth of cowbird nestlings as host mass increases, is competition for food with nestmates, which is likely to vary with the size of the host nestlings. Cowbird nestlings, in contrast to Cuckoo nestlings, generally do not force host eggs or nestlings from the nest (but see Dearborn 1996) and thus are subject to competition from other nestlings. To determine whether nestling competition is important, one would need to compare cowbird nestling growth in nests with and without nestmates. Data for Dickcissels (*Spiza americana*) (A.M. Kilpatrick, unpublished analyses) suggest that growth of cowbirds in nests with other cowbirds or host nestlings is usually not reduced (in contrast to when they are the lone nest occupant), but this result may not be valid for all host species. Unfortunately, cowbird growth data are rarely, if ever, presented in a format that would allow this comparison. As a result, this question cannot be addressed further.

This paper has two purposes. First, I gathered published and unpublished data on growth of cowbird nestlings in different host species to test hypotheses about the relationships between nestling growth and host and site characteristics. Second, I used the growth patterns of hosts and cowbirds, together with allometric relationships, to estimate the provisioning rate required by host and cowbird nestlings. I used these estimated energetic requirements to assess the impact of cowbird nestlings on their host parents, and I compared this with the effort the parents normally expend on their own young.

The growth of cowbird nestlings below their physiological maximum rate is hypothesized to (i) increase with the adult mass of the parents (Hatch 1983; Wiley 1986; Eckerle and Breitwisch 1997), since provisioning rate increases with adult mass (Bryant and Westerterp 1980; Sæther 1994), (ii) increase with the host growth rate (Hatch 1983), and (iii) increase with latitude through an increase in the number of hours during which parents are able to forage for food each day (Ricklefs 1968). I also tested two alternative hypotheses about the role temperature might play in cowbird growth. Growth may increase with temperature because of decreased thermoregulatory costs of the chicks (Ricklefs 1968; Sullivan and Weathers 1992), or decrease with temperature if heat stress impairs the ability of the parents to provide food for the young (Murphy 1985).

Methods

Nestling growth

I gathered records of cowbird growth through an intensive literature search and by contacting researchers who had worked with cowbirds. Data from hosts for which there were several nesting records suggested that a record of a single nestling was not always representative of cowbird growth for that species. In contrast, the average of any two randomly selected growth records was much more representative. As a result I included only those host species for which there were at least two records of cowbird nestling growth. Increasing this minimum to three records did not change any of the conclusions reported below. In addition, I only included hosts for which cowbird nestling masses were measured through day 8, for reasons discussed below.

I used nonlinear regression to fit the growth data to a logistic equation (Robertson 1923; Ricklefs 1968; Starck and Ricklefs 1998b) of the form

\[M_t = A(1 + \exp[-(Kt - t_i)]) \]

where \(M_t \) is the mass of the nestling in grams on day \(t \), \(A \) is the asymptotic or fledging mass in grams, \(K \) is the growth constant with units of days\(^{-1} \), \(t \) is the age of the nestling in days, and \(t_i \) is the inflection point of the curve in days.

Fitting the logistic equation to growth data in which there is no clear asymptote is somewhat problematic in that the parameters of the model (\(A, K, \) and \(t_i \)) are sensitive to small changes in the last-measured masses. Unfortunately, several researchers (e.g., Nice 1937; Hatch 1983; Dearborn et al. 1998; J.N.M. Smith, personal communication) stopped measuring nestlings on day 8 (before the asymptote was reached) to avoid “force-fledging” the nestlings prematurely. To overcome this difficulty I used mass at day 8 (hatching occurs at the beginning of day 0) as a second measure of cowbird growth. I tested each hypothesis using both of these growth measures in an effort to make the conclusions drawn from the analyses independent of the growth measure chosen. I chose mass on day 8 for the second measure because this was the latest date that could be obtained for most host species, and thus would be the best estimate of mass at fledging. For many avian species, mass at fledging has been shown to be correlated with fledgling survivorship to independence (e.g., Kremetz et al. 1989; Linden et al. 1992; CAffrey 2000; but see Stromborg et al. 1988; Wolf et al. 2002 NRC Canada
1988) and thus represents a meaningful end-point in terms of growth.

Because I wanted to compare the growth of cowbird nestlings with the growth of host nestlings, I fit daily masses of host chicks (at the same site where possible) to the same logistic growth model. I also used the nesting period of the host species as a measure of growth rate, because it has been measured for many more nestlings than I had daily masses for, and because it measures a similar quantity to the logistic growth rate, \(K \) (Ricklefs 1968).

Energy expenditure

To estimate the energetic impact of cowbird nestlings on their host parents I used the peak daily metabolizable energy (PDME) and total metabolizable energy (sensu Weathers 1992) as estimates of the energy that the host parents would have to supply to their nestlings. Because the daily masses and growth trajectories of cowbirds in different nests varied, I estimated the energetic expenditure of cowbirds for each host species separately. I calculated the energetic expenditure of host and cowbird nestlings using two equations given by Weathers (1992). The first estimates PDME, in kilojoules per day, of a nestling as

\[
M_{0.9082} \times t_{0.0428} - 0.852 \times t_{0.710}
\]

which all nestlings fledged (sources are given in Tables 1 and 3). Since the masses of the chicks in these enlarged clutches were not measured, I assumed that they fledged at the same mass as those in smaller clutches for which I had data.

Finally, the impact of cowbird nestlings on their host parents was estimated by calculating the ratio of the PDME expended by a cowbird nestling divided by that for a single host nestling. This provides an estimate of the “nestling equivalents” of one cowbird young in terms of the energetic demands on the host parents.

Results

Nestling growth

I found records of cowbird nestling growth suitable for fitting to a logistic model for 19 host species (Table 1). In addition, records of cowbird nestling masses on day 8 were found for one additional host species, the Tree Swallow. Sample sizes of nestlings of each species in the analyses varied from 2 to 78 (Table 1). House Finches (scientific names for all species are given in Table 1) and Tree Swallows did not fledge any cowbird young (Mills 1988; Kozlovic et al. 1996) and were excluded from the analyses below. The growth parameters for cowbird and host nestlings are given in Table 1.

Cowbird growth measured as mass on day 8 did not significantly increase with host adult mass (\(r = 0.18, p = 0.47 \); Fig. 1). Day 8 mass in hosts smaller than adult cowbirds was not significantly different from day 8 mass in hosts larger than adult cowbirds (\(t \) test, \(t_{17} = -1.25, p = 0.25 \)). In addition, there was no significant difference in the variance in cowbird day 8 mass between smaller and larger hosts (\(F_{1,17} = 1.046, p = 0.75 \)). The coefficient of variation for cowbird day 8 mass among hosts was 0.15. This was similar to the coefficient of variation for individuals within a single host species (e.g., Indigo Bunting 0.17, Ovenbird 0.11, Blue-gray Gnatcatcher 0.15, Song Sparrow 0.14), suggesting that there was greater variation among hosts than would be expected simply as a result of individual variation within hosts. However, this variation was uncorrelated with host adult mass in a univariate analysis (but see below).

Cowbird day 8 mass was negatively correlated with the nesting period of the host (\(r = -0.53, p = 0.023 \)) and positively correlated with latitude (\(r = 0.57, p = 0.013 \); Fig. 2A). Day 8 mass was also negatively correlated with the average maximum monthly temperature from May to July at the site (Anonymous 2000) during the years when the growth data were collected (\(r = -0.55, p = 0.019 \); Fig. 2B). However, maximum temperature and latitude were highly negatively correlated (\(r = -0.79, p < 0.001 \)), so it is difficult to know which independent variable is responsible for the variation in cowbird growth, or if both are. A stepwise regression suggested that latitude is slightly more influential than temperature, but the high multicollinearity of the independent variables makes this conclusion questionable.

In a multiple-regression analysis, cowbird day 8 mass was negatively related to nesting period, negatively related to maximum temperature (or positively related to latitude), and positively correlated with adult mass (Table 2). Interestingly, adult mass was significantly correlated with day 8 mass in a multivariate analysis while being uncorrelated in the univariate analysis. Either latitude or maximum temperature (but not both) showed significant effects in a multiple regression with nesting period and adult mass. I present the regression model including maximum temperature (Table 2) rather than latitude because it explains slightly more variance in day 8 mass.

The other measure of cowbird growth, the logistic \(K \), was also unrelated to host adult mass (\(r = -0.02, p = 0.9 \)). Although the relationships were all of the same sign as the correlations with day 8 mass, the cowbird logistic \(K \) showed much weaker relationships with host nesting period (\(r = -0.45, p = 0.063 \)), latitude (\(r = 0.38, p = 0.12 \)), and maximum temperature (\(r = -0.25, p = 0.31 \)).

Energy expenditure

The PDME of cowbird nestlings was uncorrelated with the adult body mass of the host parents (\(r = 0.28, p = 0.24 \); Fig. 3A). The pattern was similar when provisioning energy was measured as total metabolizable energy (\(r = 0.28, p = 0.24 \); Fig. 3B). There was also no significant correlation between cowbird day 8 mass and the PDME of an average host.
Table 1. Host and cowbird nestling growth measures.

<table>
<thead>
<tr>
<th>Host</th>
<th>K</th>
<th>A</th>
<th>(l_1)</th>
<th>N</th>
<th>Nestling period (days)</th>
<th>Source(s) for growth data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Wood-pewee (Contopus sordidulus)</td>
<td>0.42</td>
<td>16.2</td>
<td>5.9</td>
<td>29</td>
<td>15.5</td>
<td>D.R. Curson and A.M. Kilpatrick, unpublished data</td>
</tr>
<tr>
<td>Tree Swallow (Tachycineta bicolor)*†</td>
<td>0.53</td>
<td>21.9</td>
<td>6.3</td>
<td>23</td>
<td>20</td>
<td>Paynter 1954</td>
</tr>
<tr>
<td>Veery (Catharus fuscensens)</td>
<td>0.69</td>
<td>26.2</td>
<td>3.5</td>
<td>3</td>
<td>11</td>
<td>Friedmann 1929</td>
</tr>
<tr>
<td>Blue-gray Gnatcatcher (Polioptila caerula)</td>
<td>0.52</td>
<td>6.2</td>
<td>4.2</td>
<td>10</td>
<td>13</td>
<td>Ellison 1992; D.R. Curson and A.M. Kilpatrick, unpublished data</td>
</tr>
<tr>
<td>Plumbeous Vireo (Vireo plumbeous)</td>
<td>0.52</td>
<td>15.5</td>
<td>4.8</td>
<td>37</td>
<td>13.5</td>
<td>Marvil and Cruza 1989; Curson and Goguen 1998; D.R. Curson and A.M. Kilpatrick, unpublished data</td>
</tr>
<tr>
<td>Red-eyed vireo (Vireo olivaceus)†</td>
<td>0.54</td>
<td>15.0</td>
<td></td>
<td>22</td>
<td>11</td>
<td>Starck and Ricklefs 1998b</td>
</tr>
<tr>
<td>Yellow Warbler (Dendroica petechia)</td>
<td>0.69</td>
<td>9.5</td>
<td>3.9</td>
<td>74</td>
<td>10.5</td>
<td>Weatherhead 1989</td>
</tr>
<tr>
<td>Ovenbird (Seiurus aurocapillus)</td>
<td>0.60</td>
<td>15.5</td>
<td>5.4</td>
<td>3</td>
<td>8.5</td>
<td>Van Horn and Donovan 1994</td>
</tr>
<tr>
<td>Yellow-headed Blackbird (Xanthocephalus xanthocephalus)</td>
<td>0.49</td>
<td>46.1</td>
<td>5.7</td>
<td>78</td>
<td>13</td>
<td>Ortega and Cruz 1992a</td>
</tr>
<tr>
<td>Red-winged Blackbird (Agelaius phoeniceus)</td>
<td>0.56</td>
<td>36.3</td>
<td>4.8</td>
<td>25</td>
<td>12.5</td>
<td>Weatherhead 1989</td>
</tr>
<tr>
<td>Common Grackle (Quiscalus quiscula)</td>
<td>0.40</td>
<td>65.7</td>
<td>7.0</td>
<td>40</td>
<td>13.5</td>
<td>Peer and Bollinger 1997b</td>
</tr>
<tr>
<td>Northern Cardinal (Cardinalis cardinalis)</td>
<td>0.56</td>
<td>28.7</td>
<td>3.0</td>
<td>25</td>
<td>9.5</td>
<td>Norris 1947; Eckerle and Breitwisch 1997</td>
</tr>
<tr>
<td>Indigo Bunting (Passerina cyanea)</td>
<td>0.56</td>
<td>10.8</td>
<td>3.9</td>
<td>70</td>
<td>10.5</td>
<td>Payne 1992; Dearborn et al. 1998; D.C. Dearborn, unpublished data</td>
</tr>
<tr>
<td>Lazuli Bunting (Passerina amoena)</td>
<td>0.51</td>
<td>12.8</td>
<td>4.7</td>
<td>18</td>
<td>10</td>
<td>Greene et al. 1996</td>
</tr>
<tr>
<td>Dickcissel (Spiza americana)</td>
<td>0.60</td>
<td>18.3</td>
<td>4.2</td>
<td>19</td>
<td>9</td>
<td>Hatch 1983; S.A. Hatch, unpublished data</td>
</tr>
<tr>
<td>House Finch (Carpodacus mexicanus)*</td>
<td>0.44</td>
<td>19.1</td>
<td>5.8</td>
<td>11</td>
<td>15.5</td>
<td>Hill 1993; Kozlovic 1998</td>
</tr>
<tr>
<td>Henslow’s Sparrow (Ammodramus henslowii)</td>
<td>0.71</td>
<td>9.4</td>
<td>3.1</td>
<td>4</td>
<td>9.5</td>
<td>S.A. Hatch, unpublished data</td>
</tr>
<tr>
<td>Dark-eyed Junco (Junco hyemalis)</td>
<td>0.52</td>
<td>17.8</td>
<td>4.9</td>
<td>29</td>
<td>11</td>
<td>Wolf 1987</td>
</tr>
<tr>
<td>Chipping Sparrow (Spizella passerina)</td>
<td>0.54</td>
<td>11.4</td>
<td>4.2</td>
<td>56</td>
<td>10.5</td>
<td>Reynolds and Knapton 1984</td>
</tr>
<tr>
<td>Song Sparrow (Melospiza melodia)</td>
<td>0.47</td>
<td>23.8</td>
<td>5.3</td>
<td>20</td>
<td>10.5</td>
<td>Smith et al. 1982</td>
</tr>
</tbody>
</table>

Note: \(N\) is the number of nestlings measured. See Methods for details on estimating growth parameters. Data for several species were taken from:

*Host did not fledge cowbird young.
†Host and cowbird growth data are from different sites.

Discussion

Previous authors have suggested that cowbird nestling growth might increase with the adult or nestling mass of the host (Hatch 1983; Wiley 1986; Eckerle and Breitwisch 1997), since larger species generally have higher provisioning rates (Sæther 1994). My analyses suggest that cowbird growth is not strongly related to adult mass, and that most hosts are able to provision cowbirds sufficiently for them to fledge within their normal nesting period.

Four host species appeared to be exceptions to this generalization. In these hosts, cowbirds showed substantially lower growth rates, resulting in day 8 masses much lower than the average day 8 mass, 23.9 g. However, in only one species, the Blue-grey Gnatcatcher, did host adult mass appear to be an explanatory factor. At 6 g, Blue-grey Gnatcatchers represent one of the smallest hosts of cowbirds and may simply be unable to provision at a rate sufficient to support the cowbirds’ potential for rapid growth. The rate at which gnatcatcher parents provision an average clutch of 4.35 nestlings falls short of that necessary to feed a single cowbird growing at the maximum observed rate (Fig. 3A) and suggests that while cowbirds are able to fledge from gnatcatcher nests, they do so at much smaller sizes and their survivorship to independence may be reduced.

The other three host species in whose nests cowbirds grew poorly were the House Finch, Tree Swallow, and Western Wood-pewee (Table 1). Poor growth in House Finch nests has been previously attributed to protein deficiency of the granivorous diet they feed their nestlings after the first few days following hatching (Kozlovic et al. 1996). Tree Swal-
Cowbird growth was impacted by higher thermoregulatory costs at colder sites (Fig. 3B).

The negative relationship between host nestling period and cowbird growth is due in large part to the poor growth of cowbirds in nests of three host species from the same arid site in northeast New Mexico (Blue-gray Gnatcatcher, Western Wood-pewee, and Plumbeous Vireo). Cowbird growth was uncorrelated with surrogates of food delivery such as the amount of energy metabolized by the host brood, which suggests that the negative correlation with host nestling period is not a result of decreased provisioning rates. Whether this correlation with nestling period was an artifact of the small sample size of species presented here or represents a real pattern is unclear.

One possible confounding factor merits mention. Adults of one subspecies of Brown-headed Cowbird, *M. a. obscurus*, are significantly smaller than those of the other two subspecies (average male mass: *M. a. obscurus* 40.2 g and *M. a. artemisiae* 47.5 g (Fleischer and Rothstein 1988); *M. a. ater* 48.9 g (Weatherhead and Teather 1987)). Nestlings of *M. a. obscurus* are present at three of the sites and thus are likely represented in the nests of five of the species in this paper (Blue-gray Gnaticatcher, Western Wood-pewee, Plumbeous Vireo, Song Sparrow, and Yellow-headed Blackbird). However, if the growth measures for these species
were 16.5% higher (the size difference of the subspecies), the correlations with latitude and maximum temperature would remain. In addition, at all three of the sites where M. a. obscurus occurs, cowbird nestling size is likely to be intermediate between the size of M. a. obscurus and the other two subspecies as a result of the relatively new expansion (Ortega and Cruz 1992b) of M. a. obscurus into these sites.

Impacts on host parents

Cowbird nestlings require significantly more food than one nestling of most of their common hosts. In cases where hosts are multiply parasitized, nests containing several cowbirds may require more food than a parent would need to provide to the largest clutch that has ever been recorded for that species (Table 3). Nestling cowbirds appear to be able to elicit a very high rate of foraging from parents, leading to increased stress and perhaps greater predation on the parents. This cost in terms of reduced parental survival compounds the fitness costs of egg removal and reduced host–nestling survival. Two studies (Smith 1981; Sedgwick and Iko 1999) examined whether the future fecundity or survivorship of host parents decreased following parasitism. In both cases, unparasitized and parasitized parents appeared to fare equally well, but the authors of both studies argued that cowbirds appeared to select older or superior parents. My analyses suggest that the energetic impact on the parents may be substantial and argue for further study of this issue. To circumvent the difficulties encountered by Smith (1981) and Sedgwick and Iko (1999), the magnitude of the impact on parents could be directly measured by experimentally removing cowbird eggs from half of the parasitized nests and then following the survivorship and future fecundity of the parents.

Multiply parasitized nests may represent an opportunity to

Fig. 1. Growth of cowbird nestlings measured as day 8 mass plotted against the host adult mass (sexes averaged). House Finches and Tree Swallows did not fledge cowbirds and are not included.

Fig. 2. Growth of cowbird nestlings measured as day 8 mass plotted against the latitude of the site (A) and the average maximum monthly temperature from May to July during the years when the growth data were collected (B). House Finches and Tree Swallows did not fledge cowbirds and are not included.

Fig. 3. Logarithmic plot of peak daily metabolizable energy (PDME) of nestlings (A) and total metabolizable energy versus host adult mass (B). The host-brood value is the average clutch size of the host multiplied by the value for one host nestling. The value for the cowbird is calculated from the average growth curve of cowbird nestlings in that host nest.

Table 2. Multiple-regression analysis of cowbird day 8 mass.

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Coefficient</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>48.52</td>
<td>10.93</td>
<td><0.001</td>
</tr>
<tr>
<td>Host nestling period (day)</td>
<td>-0.90</td>
<td>-4.35</td>
<td>0.001</td>
</tr>
<tr>
<td>Adult mass (g)</td>
<td>0.04</td>
<td>2.87</td>
<td>0.012</td>
</tr>
<tr>
<td>Maximum temperature (°C)</td>
<td>-0.57</td>
<td>-3.89</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Note: The total variance explained (R²) by this model was 72.2%.
measure the maximum foraging rate of a host species. The loud, persistent begging calls of cowbird young immediately before and after nearly every delivered meal (A.M. Kilpatrick, personal observation) serve as a strong signal (Brooke and Davies 1989; Kilner et al. 1999) to parents to continue foraging to feed the nestling. Because cowbirds are unrelated to their parents and their nestmates, cowbird nestlings’ fitness would be unaffected by overworking their parents, provided the parents live long enough to raise the cowbirds to independence. Parasitized clutches provide tests of hypotheses about the maximum levels of parental care that parents are willing to perform both for a brood, and for a single nestling. For a Blue-gray Gnatcatcher, one cowbird is nearly the equivalent of an entire clutch of its own young. That the parents are willing to feed cowbird nestlings to fledging and beyond suggests that the growth of a single host nestling is not limited by the maximum effort a parent will devote to one nestling.

The data in Fig. 3 and Table 3 can also be used to make predictions about which hosts would be able to raise multiple cowbirds, and how many. For example, Yellow Warbler parents are much less likely to be able to raise multiple cowbirds than are Red-winged Blackbirds, owing to much lower PDMEs. The larger number of cowbird eggs in Red-winged Blackbird nests than in Yellow Warbler nests (Weatherhead 1989) may be a reflection of nest-site characteristics, but may also be due to female cowbirds’ assessment of the likelihood that the host will be able to raise multiple cowbirds.

Parasitism by Brown-headed Cowbirds has a substantial impact on many songbird species across North America. Several control programs include removal of adult cowbirds through trapping and shooting (e.g., Eckrich et al. 1999), while others have also implemented egg and nestling removal of cowbirds (Whitfield et al. 1999). The results of this study suggest that removal of cowbird eggs from host nests will have the dual benefit of increasing the likelihood that the host will fledge some of its own young and decreasing the substantial energetic impact of cowbird nestlings on their host parents.

Acknowledgements

I thank several of the authors of the individual studies, who were most gracious in providing their raw, hard-earned, and sometimes unpublished data. Special thanks go to Scott Hatch, Jamie Smith, David Scott, Patrick Weatherhead, Don Dearborn, Randy Breitwisch, Dirk Burhans, and John Faaborg.

I owe credit to the Porter laboratory for stimulating discussion.

Table 3. Comparison of peak daily metabolizable energy (PDME) in nests with an average-size clutch, a maximum-size clutch, and a parasitized clutch.

<table>
<thead>
<tr>
<th>Host Species</th>
<th>Adult mass</th>
<th>Avg. clutch size</th>
<th>Avg. brood PDME</th>
<th>Max. clutch size</th>
<th>Max. brood PDME (A)</th>
<th>Max. parasitized clutch (B)</th>
<th>Max. parasitized brood PDME (B)</th>
<th>B/A ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Wood-pewee</td>
<td>12.8</td>
<td>3</td>
<td>136</td>
<td>4</td>
<td>182</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veery</td>
<td>31.2</td>
<td>4</td>
<td>325</td>
<td>5</td>
<td>407</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blue-gray Gnatcatcher</td>
<td>6</td>
<td>4.4</td>
<td>89</td>
<td>5</td>
<td>102</td>
<td>2C</td>
<td>139</td>
<td>1.36</td>
</tr>
<tr>
<td>Plumbeous Vireo</td>
<td>16.6</td>
<td>4</td>
<td>192</td>
<td>5</td>
<td>240</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-eyed Vireo</td>
<td>16.7</td>
<td>3.75</td>
<td>194</td>
<td>5</td>
<td>245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow Warbler</td>
<td>9.5</td>
<td>3.5</td>
<td>116</td>
<td>6</td>
<td>198</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ovenbird</td>
<td>19.4</td>
<td>4.4</td>
<td>248</td>
<td>6</td>
<td>338</td>
<td>3H + 2C</td>
<td>345</td>
<td>1.02</td>
</tr>
<tr>
<td>Yellow-headed Blackbird</td>
<td>76.8</td>
<td>3.8</td>
<td>526</td>
<td>5</td>
<td>692</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-winged Blackbird</td>
<td>52.6</td>
<td>3.3</td>
<td>341</td>
<td>6</td>
<td>620</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Grackle</td>
<td>113</td>
<td>4.8</td>
<td>824</td>
<td>6</td>
<td>1030</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Cardinal</td>
<td>44.7</td>
<td>3.5</td>
<td>329</td>
<td>5</td>
<td>470</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indigo bunting</td>
<td>14.5</td>
<td>3.1</td>
<td>115</td>
<td>4</td>
<td>148</td>
<td>2H + 2C</td>
<td>249</td>
<td>1.68</td>
</tr>
<tr>
<td>Lazuli Bunting</td>
<td>15.3</td>
<td>3.5</td>
<td>154</td>
<td>5</td>
<td>221</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dickcissel</td>
<td>17</td>
<td>4</td>
<td>256</td>
<td>6</td>
<td>384</td>
<td>3H + 3C</td>
<td>472</td>
<td>1.23</td>
</tr>
<tr>
<td>House Finch</td>
<td>21.4</td>
<td>4.2</td>
<td>221</td>
<td>6</td>
<td>316</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Henslow’s Sparrow</td>
<td>18</td>
<td>4</td>
<td>137</td>
<td>5</td>
<td>171</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark-eyed Junco</td>
<td>19.6</td>
<td>4</td>
<td>229</td>
<td>6</td>
<td>343</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chipping Sparrow</td>
<td>12.3</td>
<td>4</td>
<td>156</td>
<td>5</td>
<td>195</td>
<td>3H + 1C</td>
<td>209</td>
<td>1.07</td>
</tr>
<tr>
<td>Song Sparrow</td>
<td>20.8</td>
<td>3.5</td>
<td>266</td>
<td>6</td>
<td>456</td>
<td>5C</td>
<td>495</td>
<td>1.08</td>
</tr>
<tr>
<td>Average</td>
<td>29.0</td>
<td>3.83</td>
<td>259</td>
<td>5.33</td>
<td>362</td>
<td></td>
<td></td>
<td>1.24</td>
</tr>
</tbody>
</table>

Note: For sources see Table 1 plus Friedmann (1929) and Friedmann (1963).

From Dunning (1993).

The number of host (H) and cowbird (C) nestlings in the nest.

Fig. 4. Numbers of “nestling equivalents” (cowbird PDME / host PDME) plotted against host adult mass. See Methods for further explanation.

Note: For sources see Table 1 plus Friedmann (1929) and Friedmann (1963).

From Dunning (1993).

The number of host (H) and cowbird (C) nestlings in the nest.
sion of the preliminary results of this study that pointed me to several alternative hypotheses presented here. The NRA Whittington Center and V-7 Ranch provided access to their properties to collect data for Blue-gray Gnatcatchers, Western Wood-Pewee, and Plumbeous Vireo; these data were collected in conjunction with David Curson and 8 field assistants in 1999 and 2000. Finally, I thank Bob Ricklefs for some helpful hints on fitting growth models to data. This paper was improved through the comments of James Smith, Chris Tracy, Bill Karasov, David Curson, and three anonymous reviewers. I was supported by a grant from the Davis Memorial Fund of the Department of Zoology, University of Wisconsin, Madison, and a U.S. Fish and Wildlife Service grant to Nancy Mathews.

References

Robertson, T.B. 1923. The chemical basis of growth and senescence. Lippincott, Philadelphia.