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Risk of human exposure to vector-borne zoonotic pathogens is a function of the abundance and infection prevalence
of vectors. We assessed the determinants of Lyme-disease risk (density and Borrelia burgdorferi-infection prevalence of
nymphal Ixodes scapularis ticks) over 13 y on several field plots within eastern deciduous forests in the epicenter of US
Lyme disease (Dutchess County, New York). We used a model comparison approach to simultaneously test the
importance of ambient growing-season temperature, precipitation, two indices of deer (Odocoileus virginianus)
abundance, and densities of white-footed mice (Peromyscus leucopus), eastern chipmunks (Tamias striatus), and acorns
(Quercus spp.), in both simple and multiple regression models, in predicting entomological risk. Indices of deer
abundance had no predictive power, and precipitation in the current year and temperature in the prior year had only
weak effects on entomological risk. The strongest predictors of a current year’s risk were the prior year’s abundance of
mice and chipmunks and abundance of acorns 2 y previously. In no case did inclusion of deer or climate variables
improve the predictive power of models based on rodents, acorns, or both. We conclude that interannual variation in
entomological risk of exposure to Lyme disease is correlated positively with prior abundance of key hosts for the
immature stages of the tick vector and with critical food resources for those hosts.
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Introduction

Many emerging and re-emerging infectious diseases of
humans are zoonoses transmitted by vectors. Examples
include West Nile virus, ehrlichiosis, anaplasmosis, tick-borne
encephalitis and Lyme disease. In each case, the vector—
usually a mosquito or tick—acquires the pathogen from a
vertebrate host during a blood meal taken early in the life
cycle and becomes capable of transmitting it to humans
during a later blood meal. Risk of human exposure to the
disease increases with increasing abundance and infection
prevalence of the vectors [1,2]. For virtually all vector-borne
zoonoses, disease incidence in humans varies substantially
from year to year [3–5]. Determining the causes of inter-
annual variation in entomological risk would facilitate the
development and deployment of preventative measures,
potentially reducing the burden of disease.

Lyme disease is the most frequently reported vector-borne
disease in the US [6]. Lyme disease is most prevalent in
northeastern and north-central regions where suburban and
exurban development encroaches on deciduous forest eco-
systems that support the pathogen, vector, and their
vertebrate hosts [7]. The etiological agent is a spirochete
bacterium, Borrelia burgdorferi, which is transmitted by ticks in
the Ixodes ricinus complex. In the eastern and central US, the
vector is the blacklegged tick, Ixodes scapularis. I. scapularis is a
three-host tick, requiring three blood meals, one each as a
larva, nymph, and adult, to fulfill its life cycle. Larval ticks
hatch in midsummer, typically uninfected with B. burgdorferi,
and begin seeking a host for their initial blood meal. After
feeding on a vertebrate host for several days, the larvae drop

off the host and molt into the nymphal stage, which
undergoes diapause for almost a year before becoming active
and seeking a host the following late spring or early summer.
Both larvae and nymphs are highly nonspecific in their choice
of hosts, parasitizing dozens of species of mammal, bird, and
lizard [8]. After feeding to repletion, nymphs drop off the
host and molt into the adult stage, which seeks a medium- or
large-mammal host in midautumn of the same year. Infection
with B. burgdorferi can be acquired from the host during either
the larval or nymphal blood meal, and both nymphs and
adults are capable of transmitting infection to a vertebrate
host, including humans.
Owing to its tiny size, potentially high abundance, and

summer feeding, the nymphal stage is most likely to transmit
B. burgdorferi to people and hence is responsible for the great
majority of Lyme-disease cases [9]. Risk of human exposure to
Lyme disease, given entry into habitats where ticks occur
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(mainly forests; [10]), is a function of the density of infected
nymphal ticks, which in turn is the product of the total
density of nymphs (DON) and the nymphal infection
prevalence (NIP) [11]. Determining the causes of variation
in density of infected nymphs (DIN) and its component parts
is an important goal with both ecological and epidemiological
implications. Human behavioral patterns, such as time spent
in forest habitat and protective measures taken against
exposure to ticks, also influence Lyme-disease risk but are
beyond the scope of this study.

Prior studies of the factors influencing DIN and DON have
focused largely on variation in climate and in the abundance
and distribution of white-tailed deer (Odocoileus virginianus).
Because ticks spend greater than 95% of their lives on the
forest floor either digesting the blood meal, undergoing
diapause, or seeking a host, exposure to ambient temperature
and humidity could be important to survival rates and
population dynamics [12–14]. In the laboratory, ticks expe-
rience high mortality when exposed to low humidity and high
temperatures [15]. Consequently, hot and/or dry springs and
summers have been postulated to reduce subsequent nym-
phal tick densities and Lyme-disease risk [16–18].

Because adult I. scapularis feed predominantly on white-
tailed deer [19], much research has evaluated the impact of
variation in abundance of deer on abundance of ticks. When
deer are eliminated from some habitats by hunting or
fencing, the abundance of ticks typically is strongly reduced
[20–22]. Studies comparing natural variation in deer abun-
dance with that in tick abundance are less conclusive; some
have shown strong associations [23–25], whereas others have
not [26–28].

Less attention has been paid to the potential effects of
variation in abundance of hosts for larval ticks in influencing
variation in DIN, DON, and NIP. This is perhaps a
consequence of the lack of specialization by larvae on any
particular host species. However, larval I. scapularis feed
abundantly on white-footed mice (Peromyscus leucopus), and
this host is the most competent natural reservoir for B.
burgdorferi [29,30]. High feeding success on mice combined
with high reservoir competence has led some researchers to
postulate that Lyme-disease risk will vary with mouse
abundance [31,32]. Although eastern chipmunks (Tamias
striatus) host many larval ticks and are competent B. burgdorferi
reservoirs [33], the impacts of variation in chipmunk
abundance on Lyme-disease risk have been even less
thoroughly explored (but see [34,35]).

The food resources for tick hosts might also be important
to Lyme-disease risk. Oak trees (Quercus spp.) that dominate
many forests in the US Lyme-endemic zone are known to
produce highly variable acorn crops, a phenomenon known
as masting. Acorns comprise a crucial resource for several
vertebrate species, including white-footed mice, eastern
chipmunks, and white-tailed deer, and can influence pop-
ulation density of the rodents [32,36–38] as well as space use
by deer [39]. Jones et al. [40] described a dramatic increase in
abundance of larval I. scapularis following experimental
simulation of a masting event, but the scale of the experi-
ments was insufficient to assess longer-term impacts on
abundance of nymphs. In a follow-up, Ostfeld et al. [41]
described a positive correlation between metrics of Lyme-
disease risk and both prior-year mouse abundance and acorn
abundance 2 y previously.

No prior study has assessed simultaneously the effects of
variation in temperature, precipitation, deer, mice, chip-
munks, and acorns, on variation in entomological risk of
exposure to Lyme disease (Figure 1). Assessments of subsets of
these putative causal variables are characterized by relatively
short time series, which have limited power to assess the
influence of each factor separate from the others. Here we
use long-term monitoring of these parameters combined with
model comparison approaches to address the causes of
variable risk in an area of high Lyme-disease incidence.

Results

The principal entomological Lyme-disease risk factor, DIN,
varied by an order of magnitude among years, ranging from
1.07 infected nymphs 3 100 m�2 in 1997 (averaged across all
six plots) to 10.00 3 100 m�2 in 1996. This variation was due
primarily to variation in DON, which varied 6-fold among
years (3.59 to 21.07 3 100 m�2). In contrast, NIP varied less
than 2-fold among years, from 0.24 in 2005 to 0.45 in 1999.

Models for Total DON
Effect of growing degree days in the previous year (GDDt�1)

on DON in the current year was positive but very weak in
both the magnitude (estimated slope of the regression) and
the strength of evidence for the effect (Table 1). Total
growing season precipitation in the current year (PPTt) also
weakly influenced DON, but the effect was Gaussian with a
peak at 223 mm. A model in which these two weather terms
are combined multiplicatively was stronger than either of the
univariate models, but explained only 15% of the variance
(Table 1). None of the other climate variables, deer variables,
or prior year’s density of larvae (DOLt�1) had any effect on
DON; i.e., Akaike’s information criterion corrected for small
sample size (AICcorr) values were much higher than those of
the means model. Abundance of acornst�2, micet�1,
chipmunkst�1, and rodentst�1 (sum of mice and chipmunks)
all independently influenced DON, and in all cases linear
models were superior to exponential or power functions. The
best univariate model for DON was a simple linear model of
chipmunkst�1, which explained 40% of the variance (Table 2;
Figure 2). In no case was a multiple regression model superior
to the chipmunk model (Table 2).

Models for NIP
Among all univariate models, NIP responded only to the

density of acorns in year t�2 (Figure 3), and this relationship
explained only 16% of the variance in NIP. Models
incorporating the climate variables, deer variables, DOL,
mice, chipmunks, and total rodents performed no better than
the means model (Tables 3 and 4). Because none of the
independent variables other than acornst�2 produced an
improvement over the means model, there was no justifica-
tion for testing multiple regression models.

Models for DIN
Similar to the results for DON, the effect of GDDt�1 on DIN

in year t was positive but very weak in both the magnitude
and the strength of evidence for the effect (Table 5). Total
PPTt also weakly influenced DIN, and again the effect was
Gaussian with a peak at 213 mm of rainfall. A model in which
these two weather terms are combined multiplicatively was
stronger than either of the univariate models, but explained
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only 11% of the variance (Table 5). None of the other weather
variables, deer variables, nor DOLt�1 had any effect on DIN,
with AICcorr values higher than those of the means model.
Abundance of acornst�2, micet�1, chipmunkst�1, and
rodentst�1 all independently influenced DIN. For acornst�2,
micet�1, and rodentst�1, the best models were nonlinear, but
the difference in AICcorr (DAICcorr) between the best model
and corresponding linear model was always less than 1 (i.e.,
they had equivalent levels of support in the data), and the
shapes of all nonlinear models were very close to linear (Table
5). Consequently, we tested linear combinations of these
predictor variables in multiple regressions.

A model combining micet�1 and acornst�2 multiplicatively
was the best model of all multiple regressions combining
predictor variables that were supported by univariate
analyses, and it explained 57% of the variance in DIN (Table
6; Figure 4A). The model with multiplicative effects of

chipmunkst�1 and acornst�2 was nearly as good, with DAICcorr

¼ 1.05, and a slightly higher R2 (0.61) (Figure 4B).

Host Responses to Acorns
Densities of both mice and chipmunks responded strongly

to the prior year’s acorn abundance, and in both cases the
relationship was best described by saturating power functions
(Figure 5A and 5B). As a result of their similar responses to
acorn abundance, the abundance of mice and chipmunks was
strongly correlated among years (r¼ 0.62). A linear model of
the mouse–chipmunk correlation was superior to any of the
nonlinear models, with a slope of 0.25 indicating that mice
are consistently about four times as abundant as chipmunks
(Figure 5C). As a consequence of acorns influencing rodent
abundances, and rodents influencing nymphal abundances,
we observed a general pattern in which DON tracked rodents,
and rodents tracked acorns, each effect displaying a 1-y lag
(Figure 6).

Figure 1. Diagram of Life Cycle of the Blacklegged Tick (I. scapularis)

Shows the four life stages, egg, larva, nymph, adult, and the times during the life cycle that both abiotic (GDD, PPT), and biotic (acorns and various
hosts) factors might exert influence. Year t is the year during which nymphal ticks seek hosts, including humans, and represents the focal year with
respect to risk of exposure.
DOI: 10.1371/journal.pbio.0040145.g001

Table 1. Model Comparison Statistics for Independent Variables Potentially Influencing the DON Based on the Full Dataset
(58 Plot Years)

Model Type Variable Maximum Likelihood Parameters AICcorr R2

Means model — �202.51 2 409.25 —

Simple linear regressions GDDt�1 �200.13 3 406.70 0.08

GDDt �201.83 3 410.11 0.02

PPTt�1 �202.35 3 411.14 0.01

PPTt �201.07 3 408.57 0.05

DEERt�2 �202.31 3 411.07 0.01

BROWSEt�2 �201.40 3 409.25 0.04

DOLt�1 �202.02 3 410.48 0.02

PPTt (Gaussian) �198.64 4 406.04 0.14

GDDt�1 (Gaussian) �199.93 4 408.61 0.09

PPTt (Gaussian) 33 GDDt�1 �197.88 4 404.51 0.15

‘‘Means model’’ is the model based only on the intercept of the regression. The model with the most support (lowest AICcorr value) is in bold. DEER refers to bow-hunter surveys, and
BROWSE to percentage of stems browsed by deer. Subscripts refer to the year in which the independent variable was estimated, with year t being the year in which the dependent
variable was estimated.
DOI: 10.1371/journal.pbio.0040145.t001
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Given their relatively long generation times and low
reproductive potential, it is unrealistic to expect deer
population abundance to track annual variation in acorn
production. However, the potential exists for deer to be
attracted from nonoak to oak habitats by the presence of
abundant acorns [39,42]. Because deer are an important host
for adult ticks, and adult ticks lay eggs where they drop off

their hosts, we expected that DOL in any given year would
reflect deer space use the prior fall and should be positively
correlated with acorn abundance. We found a weak, linear
relationship between deert�2 and DOLt�1, with this model
being only a slight improvement over the means model
(DAICcorr ¼ 0.39; R2 ¼ 0.04). In addition, no relationship
existed between acorns t�2 and DOLt�1; all models, whether
linear or nonlinear, were worse than the means model.

Table 2. Model Comparison Statistics for Independent Variables Potentially Influencing the DON Based on the Subset of Plot Years for
Which All Independent Variables Were Estimated (42 Plot Years)

Model Type Variable Shape Maximum Likelihood Parameters AICcorr R2

Means model — — �140.472 2 285.26 —

Simple regressions Acornst�2 Linear �136.42 3 279.48 0.18

Exponential �136.64 3 279.94 0.17

Power �139.24 3 285.13 0.06

Micet�1 Linear �132.20 3 271.05 0.33

Exponential �132.49 3 271.63 0.33

Power �133.96 3 274.58 0.27

Chipmunkst�1 Linear �129.92 3 266.49 0.40

Exponential �130.51 3 267.67 0.38

Power �131.87 3 270.40 0.34

Rodentst�1 Linear �130.10 3 266.85 0.40

Exponential �138.03 3 282.71 0.11

Power �131.57 3 269.80 0.35

Multiple linear regressions Micet�1 þ Acornst�2 — �131.88 4 272.86 0.34

Chipmunkst�1 þ Acornst�2 — �129.43 4 267.97 0.42

Rodentst�1 þ Acornst�2 — �130.06 4 269.22 0.40

Micet�1 þ Chipmunkst�1 þ Acornst�2 — �128.80 5 269.32 0.43

Chipmunkst�1 3 Acornst�2 — �131.34 3 269.33 0.36

Micet�1 þ (PPTt 3 GDDt�1) — �129.92 6 274.31 0.40

Micet�1 3 PPTt 3 GDDt�1 — �130.38 4 269.86 0.39

Micet�1 þ GDDt — �128.80 4 266.71 0.43

Micet�1 þ PPTt — �129.23 5 270.18 0.43

‘‘Means model’’ is the model based only on the intercept of the regression. The model with the most support (lowest AICcorr value) is in bold. Subscripts refer to the year in which the
independent variable was estimated, with year t being the year in which the dependent variable was estimated.
DOI: 10.1371/journal.pbio.0040145.t002

Figure 2. Effects of Population Density of Eastern Chipmunks (T. striatus)

on DON

Shows relationship between number of chipmunks per 2.25-ha grid in
year t�1 and DON (number per 100 m2) in year t. This regression model
for DON had the most support.
DOI: 10.1371/journal.pbio.0040145.g002

Figure 3. Effects of Acorn (Quercus spp.) Density on NIP

Shows effects of acorns per square meter in year t�2 on NIP (percentage
of nymphs infected with B. burgdorferi) in year t. This regression model
for NIP had the most support.
DOI: 10.1371/journal.pbio.0040145.g003
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Discussion

Climate, deer, and acorns each have been proposed as
primary determinants of temporal variation in risk of human
exposure to Lyme disease, as measured by abundance and
Borrelia-infection prevalence in nymphal Ixodes ticks. Using a
model comparison approach and a 13-y dataset, we foundweak
support for climate variables, no support for deer, and strong
support for an effect of acorns, mediated by acorn effects on
white-footed mice and eastern chipmunks, which host many
larval ticks and are competent reservoirs for B. burgdorferi.

Climate Variables
Of the four climate variables, two influenced DON and

DIN, but they did so in unanticipated ways. Both DON and
DIN increased linearly, albeit weakly, with increases in the
prior year’s temperature (GDDt�1). This result conflicts with
the expectation that heat-caused mortality is an important
regulator of tick abundance [15,43], but is consistent with the
finding that (detrended) incidence of Lyme disease in people
is positively correlated with summer temperatures in the
prior year [44]. Both DON and DIN were influenced, again
weakly, by precipitation in the current but not prior year, but

intermediate levels of precipitation favored highest nymphal
abundances. Again, this result conflicts with the expectation
that tick survival increases linearly with ambient moisture
[18]. LowDON and DIN in years of high precipitation could be
caused by either flood-induced mortality or that caused by
natural enemies (e.g., fungi) that are facilitated by high
moisture [45]. As expected, none of the climate variables
influenced NIP. NIP is determined by the proportions of larval
tick meals taken from the various host species, which vary
strongly in their reservoir competence. It seems unlikely that
climate variables will influence the choice of hosts by larval
ticks or relative abundances of different hosts. It remains
possible that climate variables other than the ones we
examined influence stage-specific tick survival and abundance
and that the weak or absent effects we observed are a result of
not including more important variables. Our analytical
approach could easily support assessments of other variables
for which there is some a priori expectation of an effect.

Deer Variables
The assertion that variable deer abundance is responsible

for variable abundance of blacklegged ticks and hence Lyme-
disease risk has become almost axiomatic [46,47]. This seems

Table 3. Model Comparison Statistics for Independent Variables Potentially Influencing NIP Based on the Full Dataset (58 Plot Years)

Model Type Variable Maximum Likelihood Parameters AICcorr R2

Means model — �221.63 2 447.48 —

Simple linear regressions GDDt�1 �221.18 3 448.80 0.02

GDDt �221.18 3 448.80 0.02

PPTt�1 �221.62 3 449.68 0.00

PPTt �221.48 3 449.40 0.01

DEERt�2 �221.44 3 449.32 0.01

BROWSEt�2 �221.64 3 449.72 0.00

DOLt�1 �221.63 3 449.70 0.00

‘‘Means model’’ is the model based only on the intercept of the regression. None of the models had support, as indicated by AICcorr values, higher than the means model. DEER refers to
bow-hunter surveys, and BROWSE to percentage of stems browsed by deer. Subscripts refer to the year in which the independent variable was estimated, with year t being the year in
which the dependent variable was estimated.
at DOI: 10.1371/journal.pbio.0040145.t003

Table 4. Model Comparison Statistics for Independent Variables Potentially Influencing NIP Based on the Subset of Plot-Years for
Which All Independent Variables Were Estimated (42 Plot Years)

Model Type Variable Shape Maximum Likelihood Parameters AICcorr R2

Means model — — �157.879 2 320.074 —

Simple regressions Acornst�2 Linear �154.30 3 315.26 0.16

Exponential �155.18 3 317.01 0.12

Power �160.84 3 328.33 0.00

Micet�1 Linear �157.55 3 321.76 0.02

Exponential �157.52 3 321.69 0.02

Power — — — —

Chipmunkst�1 Linear �157.30 3 321.25 0.03

Exponential �157.59 3 321.83 0.02

Power �163.26 3 333.16 0.00

Rodentst�1 Linear �157.46 3 321.57 0.02

Exponential �157.88 3 322.41 0.00

Power �157.83 3 322.30 0.00

‘‘Means model’’ is the model based only on the intercept of the regression. The model with the most support (lowest AICcorr value) is in bold. Subscripts refer to the year in which the
independent variable was estimated, with year t being the year in which the dependent variable was estimated.
DOI: 10.1371/journal.pbio.0040145.t004
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to be based largely on repeated observations that removal of
deer by fencing or shooting causes dramatic declines in tick
abundance. However, some evidence suggests that the effects
of deer on ticks are nonlinear, weak, and variable with tick
life stage [26–28]. An effect of deer abundance in year t�2 on
nymphs in year t would be expected if (1) the number of

autumn blood meals taken by adult ticks is correlated with
the abundance of deer, causing (2) density of larval ticks in
year t�1 to be correlated with deer in year t�2, and if (3)
abundance of nymphs in year t is correlated with that of
larvae in year t�1. Here, we found that more than 3-fold
variation in our indices of deer abundance did not affect

Table 6. Model Comparison Statistics for Independent Variables Potentially Influencing the DIN Based on the Subset of Plot Years for
Which All Independent Variables Were Estimated (42 Plot Years)

Model Type Variable Shape Maximum Likelihood Parameters AICcorr R2

Means model — — �113.83 2 231.96 —

Simple regression Acornst�2 Linear �104.69 3 216.00 0.35

Exponential �104.54 3 215.72 0.36

Power �107.81 3 222.25 0.25

Micet�1 Linear �142.52 3 291.48 0.36

Exponential �155.27 3 316.98 0.00

Power �142.35 3 291.15 0.36

Chipmunkst�1 Linear �101.90 3 210.43 0.43

Exponential �97.11 3 200.84 0.55

Power �102.75 3 212.13 0.41

Rodentst�1 Linear �132.08 3 270.64 0.38

Exponential �139.47 3 285.42 0.19

Power �131.67 3 269.83 0.39

Multiple linear regression Micet�1 þ Acornst�2 — �102.52 4 214.13 0.42

Chipmunkst�1 þ Acornst�2 — �97.73 4 204.54 0.54

Rodentst�1 þ Acornst�2 — �100.63 4 210.34 0.47

Micet�1 þ Chipmunkst�1 þ Acornst�2 — �97.84 5 207.34 0.53

Chipmunkst�1 3 Acornst�2 — �93.85 3 194.33 0.61

Chipmunkst�1 3 Acornst�2 þ GDDt�1 — �92.35 4 193.78 0.64

Chipmunkst�1 3 Acornst�2 þ GDDt�1 þ PPTt — �90.05 6 194.50 0.68

Chipmunkst�1 3 Acornst�2 þ PPTt — �95.15 5 201.97 0.59

Chipmunkst�1 3 Acornst�2 þ PPTt 3 GDDt�1 — �107.76 5 227.18 0.25

Micet�1 33 Acornst�2 — �93.31 3 193.28 0.57

Micet�1 3 Acornst�2 þ GDDt — �97.70 4 204.47 0.54

Micet�1 3 Acornst�2 þ PPTt — �97.58 4 204.24 0.54

Rodentst�1 3 Acornst�2 — �95.85 3 198.32 0.58

‘‘Means model’’ is the model based only on the intercept of the regression. The model with the most support (lowest AICcorr value) is in bold. Subscripts refer to the year in which the
independent variable was estimated, with year t being the year in which the dependent variable was estimated.
DOI: 10.1371/journal.pbio.0040145.t006

Table 5. Model Comparison Statistics for Independent Variables Potentially Influencing the DIN Based on the Full Dataset (58 Plot Years)

Model Type Variable Maximum Likelihood Parameters AICcorr R2

Means model — �161.95 2 328.12 —

Simple regressions GDDt�1 �160.70 3 327.84 0.04

GDDt �161.19 3 328.83 0.03

PPTt�1 �161.33 3 329.11 0.02

PPTt �161.18 3 328.80 0.03

DEERt�2 �161.83 3 330.10 0.00

BROWSEt�2 �161.18 3 328.80 0.03

DOLt�1 �161.74 3 329.92 0.01

GDDt�1 (Gaussian) �160.55 4 329.86 0.06

GDDt (Gaussian) �161.50 4 331.76 0.02

PPTt�1 (Gaussian) �161.23 4 331.22 0.02

PPTt (Gaussian) �159.54 4 327.84 0.08

DEERt�2 (Gaussian) �161.94 4 332.64 0.00

Multiple regressions GDDt�1 þ PPTt �161.3538 5 333.86 0.02

GDDt�1 33 PPTt (Gaussian) �158.7047 5 326.16 0.11

‘‘Means model’’ is the model based only on the intercept of the regression. The model with the most support (lowest AICcorr value) is in bold. DEER refers to bow-hunter surveys, and
BROWSE to percentage of stems browsed by deer. Subscripts refer to the year in which the independent variable was estimated, with year t being the year in which the dependent
variable was estimated.
DOI: 10.1371/journal.pbio.0040145.t005
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subsequent nymph abundance. This observation supports the
assertion that, once deer abundance exceeds a low threshold
value, further increases in deer density have little if any effect
on nymphal densities [48]. We did observe a weak effect of
deer on subsequent larval abundance, but larval abundance in
any given year had no impact on next year’s abundance of
nymphs. This clear but surprising result indicates a decou-
pling of stage-specific abundances and suggests instead that
abundance of nymphs depends on larval feeding opportu-
nities the prior year (see below). The lack of demographic
forcing from larval to nymphal stage each year also suggests
that the effect of larval host abundance in any given year
should penetrate only to the next year and not beyond.

Acorn and Rodent Variables

Previous research [32,40] supported an effect of acorns in
year t�2 on nymphs in year t via two pathways, one in which
abundant acornst�2 boosted larvaet�1 by enhancing deert�2,
and the other in which acorns t�2 boosted rodentst�1, which in
turn elevated nymphst (Figure 1). Our results strongly support
the second, rodent-driven pathway (Figure 6) and refute the

Figure 4. Effects of Acorn and Rodent Densities on DIN

(A) Effects of the product of acorn density (acorns per square meter) in
year t�2 and mouse (P. leucopus) density (number per 2.25-ha grid) in
year t�1 on the density of B. burgdorferi-infected nymphs (number per
100 m2) in year t. This regression model for DIN had the most support.
(B) Effects of the product of acorn density (acorns per square meter) in
year t�2 and chipmunk (T. striatus) density (number per 2.25-ha grid) in
year t�1 on the density of B. burgdorferi-infected nymphs (number per
100 m2) in year t. This regression model for DIN had nearly as much
support (AICcorr) as the mouse model (A) and a higher r2 value.
DOI: 10.1371/journal.pbio.0040145.g004

Figure 5. Effects of Acorn Density on Mouse and Chipmunk Densities

Shows effects of acorn density (acorns per square meter) in year t�2 on
(A) mouse (P. leucopus) density (number per 2.25-ha grid) in year t�1 and
(B) chipmunk (T. striatus) density (number per 2.25-ha grid) in year t�1.
(C) Correlation between mouse density and chipmunk density across
plots and years.
DOI: 10.1371/journal.pbio.0040145.g005
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first, deer-driven one. Although univariate models with
GDDt�1, PPTt, acornst�2, micet�1, and total rodentst�1 all had
support, the best model had chipmunks in the previous year
as the sole predictor of DON. A stronger role for chipmunks
than for mice was somewhat surprising given the lower
population densities of chipmunks (Figure 4) and only
modestly higher average larval burdens on chipmunks [33]
at our sites. However, less intense grooming of larval ticks by
chipmunks [49] could facilitate larval survival to the nymphal
stage. Elsewhere in the North American range of Lyme
disease, chipmunks have been postulated to play a critical
role in the enzootic cycle [34,35,50].

In contrast to previous results based on a shorter time
series [41] and to expectations based on the high reservoir
competence of mice and chipmunks [33], neither micet�1 nor
chipmunkst�1 influenced NIP. Instead, we found that the
univariate model of acorns t�2 was the only one supported by
the data. Empirically based models [51] indicate that NIP
varies strongly with variable species composition in the

community of hosts for larval ticks. Consequently, an impact
of acorns but not of single host species would be expected if
acorns alter the species composition in the host community.
In addition to mice and chipmunks, acorns are likely to
influence abundance and space use by gray squirrels (Sciurus
carolinensis), raccoons (Procyon lotor), and turkeys (Meleagris
gallopavo). The former two species are incompetent reservoirs
[33], and the latter is unlikely to be a competent reservoir
[52]. Therefore, by influencing a suite of hosts that both
stimulate and depress NIP, acorns might be expected to
explain more of the variation in NIP than would any single
host species.
Because DIN is the product of DON and NIP, one might

expect that the best explanatory model would be more
complex than those for its component parts. Indeed, we
found that the model of multiplicative effects of micet�1 (the
second best predictor of DON) and acorns t�2 (the best
predictor of NIP) had the most support. The model with
multiplicative effects of chipmunkst�1 (the best predictor of
DON) and acorns t�2 was almost as strongly supported.
Tick abundance and Lyme-disease risk can be high in

habitats with few or no oaks [21]; therefore, we do not expect
that acorn abundance will be a universal predictor of risk
[44]. However, small rodent hosts are almost always involved
in risk as both permissive tick hosts and competent Borrelia
reservoirs. Population densities of mice and chipmunks vary
dramatically among years in both oak-dominated and non-
oak-dominated forests [53], and we expect that the increase in
Lyme-disease risk that accompanies high rodent densities
should be widespread, no matter the causes of rodent
fluctuations. Acorns provide a convenient leading indicator
of rodent abundance, and seeds of other tree species [53] or
predators [54,55] might act similarly.
Previous studies of the determinants of variable Lyme-

disease risk or incidence have tended to focus on one or a
small number of potential independent variables, and
statistically significant effects of both climate [16–18] and
deer [23–25] have been described. When we included
candidate climate variables, deer indices, and larval tick
density together with densities of mice, chipmunks, and
acorns, our model comparison methods never selected
models incorporating climate, deer, or larvae and always
selected models with either rodents, acorns, or both, as
explanatory variables. Effects of variable climate or deer
abundance on Lyme-disease risk might achieve statistical
significance without being biologically important if statistical
models fail to assess more potent independent variables. It
remains possible that variable climate and deer abundance
affect large-scale spatial variation in Lyme-disease risk even if
their impacts on temporal variability are weak. Our long-
term studies of Lyme-disease risk at the epicenter of the
epidemic in North America strongly implicate a role for
population density of rodent hosts and their food resources.
We suggest that masting indices could be used to alert the
public when years of high Lyme-disease risk are anticipated.

Materials and Methods

Study sites. Field studies were conducted on the property of the
Institute of Ecosystem Studies (IES) in Dutchess County, southeastern
New York (lat 418509N, long 738459W), in the center of the
northeastern US endemic zone for Lyme disease. Dutchess County
has had among the highest incidence rates of Lyme disease in the US

Figure 6. Time Series of Acorn, Tick, and Chipmunk Densities on Study Plots

Shows time series of acorn density (acorns per square meter), chipmunk
density (number per 2.25-ha grid), and DON (number per 100 m2) on the
two longest-established study plots, Henry Farm (A) and Teahouse (B).
Note that, typically, chipmunk density tracks acorn density with a 1-y lag,
and DON tracks chipmunk density also with a 1-y lag.
DOI: 10.1371/journal.pbio.0040145.g006
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during the past 10 y [56]. IES forests are typical of the eastern
deciduous forests of New York and New England, dominated by oaks
(Quercus rubra and Quercus prinus) in the overstory (57%–70% oak
relative basal area; [42]), with oak and sugar maple (Acer saccharum)
seedlings, maple-leaved viburnum (Viburnum acerifolium), witch hazel
(Hamamelis virginiana), and ironwood (Ostrya virginiana) common in the
understory. Two 2.25-ha plots (150 m 3 150 m) were established in
1991, and four more were added in 1995 to comprise three pairs of
plots with ca. 150 m separating members of a pair and more than 700
m separating pairs.

Acorn sampling. Acorn abundance was monitored on each of the
six plots by placing circular baskets under the canopies of mature
oaks distributed throughout the plot. The original two plots had
twenty 0.5-m2 baskets, and the remaining four had twenty-five 1.0-m2

baskets. Seed baskets were supported by monofilament line attached
to nylon stakes and were resistant to seed predators. Intact, mature
acorns were counted monthly during autumn of each year, and the
total number of acorns from all baskets within a plot was divided by
the total basket area to derive an estimate of annual acorn
production on each plot. Full-season acorn data were collected from
1993 through 2004 on the original two plots and from 1999 through
2004 on the remaining four plots. Acorn density in year t�2 was used
as an independent variable potentially affecting Lyme-disease risk
factors.

Small-mammal sampling. Each year from 1991 (the two original
plots) or from 1995 (remaining plots) through 2005 we have
monitored abundance of small mammals at IES using capture–
mark–recapture techniques. On each plot we established an 11 3 11
point grid of Sherman live traps, with 15 m between trap stations and
two traps per station, for a total of 242 traps per grid. Trapping was
conducted for 2–3 consecutive days every 3–4 wk, generally from May
to November of each year. Traps were baited with crimped oats (with
sunflower seeds and cotton batting added during cold weather), set at
1600 hours and checked between 0800 hours and about 1200 hours
the following morning. This schedule allowed us to capture both
diurnal (chipmunks) and nocturnal (mice) small mammals. These two
species comprised more than 90% of captures. Small mammals were
marked with individually numbered metal ear tags and released after
handling at the point of capture. Data on age, sex, body mass,
ectoparasite burden, and trap station were recorded on each capture.
Protocols for animal handling were approved annually by an
Institutional Animal Care and Use Committee.

We estimated population densities of white-footed mice and
eastern chipmunks by inputting data from all trap sessions in a year
into the Jolly-Seber open population model in program POPAN5
[57]. We selected the Jolly-Seber model that incorporates individual
heterogeneity in capture probability. Because we were interested in
assessing the importance of rodent abundance on nymphal tick
abundance the following year, we focused on estimating rodent
densities in midsummer, which is the time of peak activity of larval I.
scapularis at our sites [10]. In order to create a standard metric when
actual trapping sessions varied in time, we estimated mouse and
chipmunk abundance for each grid and year on August 15 by linear
interpolation between rodent abundance estimates for trap sessions
immediately before and after August 15. Rodent densities in year t�1
were used as independent variables potentially affecting Lyme-
disease risk factors.

Deer abundance estimates. Deer abundance was estimated at two
levels, one at the scale of the IES property and the other at the scale
of individual plots. For estimating property-wide deer abundance
annually, we used population estimates from the IES limited-access
bow-hunting program, which has run continuously from 1987 to the
present [58]. Between seven and 11 hunters per year hunted an
average of 40 h each (range, 29–54 h) between mid-October and mid-
November. All hunters were IES staff members or volunteers working
with the staff wildlife biologist. Each was given exclusive access to one
of 34 discrete hunting areas averaging 22 ha (range, 9.3–35.7 ha).
Virtually all hunting was from tree stands. Each day, hunters reported
the number of hours hunted and the number of deer sighted, and
these data were converted to deer observed per hour hunted. As a
validation of this method, we asked whether deer observed per hour
by bow hunters were correlated with deer counts from annual
autumn spotlighting surveys conducted from 1987 to 2000 (details in
[58]) and found that the two census methods were highly correlated (r
¼ 0.70, df¼ 11, p¼ 0.01; [58]).

To estimate deer distribution on a smaller scale, we used deer
browse surveys conducted each spring (1983–2004) at a number of
sites (range, 38–50) distributed throughout the IES property.
Commonly browsed tree species or genera [59,60] have served as an
index to trends in browsing rates. These species/genera include red

maple (Acer rubrum), sugar maple (A. saccharum), serviceberry (Ame-
lanchier arborea), black birch (Betula lenta), black cherry (Prunus serotina),
oaks (Quercus spp.), hickories (Carya spp.), and ashes (Fraxinus spp.).
Browsed woody stems detected in spring reflect the distribution of
deer foraging activity during the previous autumn and winter. Data
were collected along transects of unrestricted width spaced either 200
m or 300 m apart. Starting points were associated with corners of a
100-m grid overlay of the property. A major compass direction was
randomly drawn each year for transect direction. As index species
were sighted, all buds below 2 m were counted and examined for
browsing by deer. At least 100 buds in total were examined for each
site. The percentage of available stems browsed was calculated for
each site and for each index species. We selected browse survey plots
closest to each of the trapping grids (less than 100 m distant) to
estimate deer activity specific to each of the plots. Deer browsing
intensity in year t�2 was used as an independent variable potentially
affecting Lyme-disease risk factors.

Climate variables. An almost infinite number of climate variables
(temperature, precipitation, minimum, maximum, variance, mean,
specific to months or seasons, etc.) potentially could influence tick
survival and densities of nymphs. Consequently, the probability of
uncovering spurious relationships between climate and tick abun-
dance is quite high if many explanatory variables are included without
clear a priori justification [61]. To avoid this problem, we selected
climate variables that have been reported to influence either changes
in the abundance of immature blacklegged ticks or in human Lyme-
disease incidence [16,17]. The climate variables selected represent
temperature and precipitation conditions in either the current year
(year t) or the prior year (year t�1). Values for year t reflect potential
impacts of climate on survival of the current year’s nymphal stage,
whereas those for year t�1 represent possible effects of climate on
survival of the prior year’s larval stage. Following Jones and Kitron
[16], for temperature data, we included only those months from the
beginning of the growing season through the end of the activity
season for the appropriate life stage (July for nymphs, September for
larvae; [16,41]). Specifically, we used cumulative growing degree days
(GDD) for March 1–June 30 of year t, and cumulative GDD for March
1–September 30 of year t�1. For precipitation, we included only those
months from the onset of potential soil moisture limitation (May) to
the end of the appropriate activity period [16]; i.e., PPT (in mm) for
May 1–June 30 of year t; and PPT for May 1–September 30 of year t�1
[16]. All climate data came from the IES environmental monitoring
station (http://www.ecostudies.org/emp_purp.html), located less than
1.5 km from our field plots

Tick and Borrelia sampling. Estimates of the abundance and
infection prevalence of nymphal ticks comprised the response
variables of interest. In addition, estimates of larval abundance in
year t�1 were used as an independent variable. We monitored the
abundance of larval and nymphal ticks in each plot and year by
dragging 1-m2 white corduroy drag cloths [62] along 450 m of
transects approximately every 3 wk from April through November.
Drag cloths were examined and all ticks counted and removed every
30 m. Frequent sampling in the early 1990s revealed that peak host-
seeking activity for larvae occurred in mid- to late August, and for
nymphs in mid- to late June, and we timed our annual sampling to
coincide with these peaks. For each plot and year, we estimated larval
and nymphal abundance as the peak density (ticks per 100 m2). Peak
densities were highly correlated with cumulative seasonal densities
(correlation coefficients typically greater than 0.80; R. Ostfeld,
unpublished data) on each plot.

Infection of individual ticks with B. burgdorferi was determined
using direct immunofluorescence assay (DIA). Ticks were washed
once in 70% ethanol and twice in deionized water and ground in
phosphate-buffered saline (PBS). Three 5-ml aliquots of tick
suspension were placed in separate wells in a multiwell slide, air-
dried, and fixed in cold acetone for 10 min. Fluorescein rabbit anti-B.
burgdorferi conjugate was incubated in wells at 37 8C for 45 min, after
which slides were washed in PBS, dried, and mounted with a
coverslip. Slides were examined systematically to categorize each tick
as either infected or uninfected. On average, 378 nymphs (range,
146–660) were examined for infection each year. Our estimates of
tick infection based on DIA have been verified by virtually identical
infection prevalence estimates (within 1.6 percentage points) for IES
ticks based on PCR and reverse-line blotting [63,64].

Statistical methods. Our goal was to evaluate the strength of
evidence for effects of a series of plausible independent variables on
temporal variation in entomological risk of human exposure to Lyme
disease (Figure 1). Risk was measured by annual estimates at
individual sample locations for the DON, NIP, and their product,
the DIN. For each of the three response variables (DON, NIP, DIN) we
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compared the strength of evidence for a series of alternative,
competing regression models using AICcorr. We created both linear
and nonlinear (exponential, power function, Gaussian) models, as
appropriate. We first compared evidence for each of the 11
independent variables separately by comparing the AICcorr of their
regression models to the AICcorr value of an intercept-only (i.e., mean)
model. The 11 independent variables included two temperature
variables, two precipitation variables, two indices of deer abundance,
abundance of larval ticks, acorn abundance, and three measures of
small mammal abundance. We checked for colinearity among the
independent variables using correlation coefficients. Because there
were missing values for some variables in some years and plots, the
univariate models were compared against mean models estimated
with the same subset of (nonmissing) observations. We then tested
series of increasingly complex models by combining sets of
independent variables for which there was evidence (as measured by
AIC) of univariate effects. Our choices for the forms of the multiple
regression models were guided by the dictates of parsimony: while our
dataset represents an enormous sampling effort over a 13-y period,
the actual sample sizes (a given plot in a given year) were still relatively
small, ranging from 42 to 58 observations for the various models.

We used simulated annealing (a global optimization algorithm) to
find the maximum likelihood estimates for the parameters of each
model. The observations were assumed to be normally distributed
with a homogeneous variance. Examination of the residuals indicates
that this assumption was appropriate for all three of the response
variables. The specific annealing algorithm we used (based on Goffe

et al. [65]) allows a bounded search in cases where a range of
parameter values is either mathematically inconsistent or biologically
unreasonable (i.e., negative densities or variance estimates). The
sample locations were widely enough distributed that we are
confident in assuming that the error terms in our models are
spatially independent, and there was no evidence of temporal
autocorrelation in the residuals. The simulated annealing and all of
the statistical analyses were done using R (http://www.r-project.org).
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