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Emerging and re-emerging infectious diseases of humans
and wildlife are increasing at an alarming rate, with

detrimental consequences for public health, ecosystem
health, and biodiversity (Cohen 2000; Dobson and
Foufopoulos 2001). Emerging infectious diseases (EIDs) are
those that have recently increased in incidence, geographic
range, or host range (Daszak  et al. 2000). The emergence of
viruses such as Nipah, Hendra, SARS, and avian influenza
A during the past decade has increased scientific and public
awareness about the threat of infectious disease and the

importance of the links among human, animal, and ecosys-
tem health. Although less publicized, the influence of EIDs
on ecosystem and wildlife health is equally important. EIDs
such as chytridiomycosis in amphibians, avian malaria in
Hawaiian avifauna, canine distemper in ferrets, and multi-
ple disease syndromes among corals have been linked
directly to declines in wildlife populations (Van Riper  et al.
1986; Williams et al. 1988; Richardson and Voss 2005;
Rachowicz  et al. 2006). Diseases are also thought to con-
tribute to species extinctions, especially in cases where
they act synergistically with anthropogenic impacts such as
harvesting or habitat destruction to reduce populations
below a critical size threshold for survival (Cunningham
and Daszak 1998; Daszak and Cunningham 1999; de
Castro and Bolker 2005; Choisy and Rohani 2006; Lips  et
al. 2006; Schloegel  et al. 2006; Smith  et al. 2006). Many
EIDs are inherently difficult to study for a variety of rea-
sons, including the fact that their etiologic agents are
poorly characterized (eg coral disease), disease risk is medi-
ated by complex interactions among multiple hosts (eg
Lyme disease, canine distemper), or they have very large-
scale to pandemic distributions (eg avian flu).

Global and regional ecological change is often mediated
through complex and large-scale processes, making the
links between ecological change and disease emergence
difficult to demonstrate scientifically. Human activities
can result in rapid ecological change through factors such
as climate variability, urbanization, invasive species
spread, changes in biogeochemical cycling, pollution,
habitat fragmentation, and biodiversity loss (Midgley and
Thuiller 2005; Hong and Lee 2006). Such rapid global
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Despite awareness that disease emergence may be related to ecological change, few studies have rigorously ana-
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ease emergence are challenged by the complexity, scale, and
natural variability of the systems involved

• Traditional approaches to studying cause-and-effect relation-
ships (eg experiments and hypothesis testing) are often not pos-
sible when study units are large and complex (populations or
ecosystems) and risk factors have non-linear, hierarchical effects

• We suggest techniques that complement hypothesis testing
and outline a rigorous approach to causal investigation in
complex systems
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ecological change is thought to reduce ecosystem func-
tioning (Chapin et al. 2000), degrade ecosystem services
(Foley  et al. 2005), and threaten wildlife and public
health (Daszak  et al. 2001; Patz 2001; Patz  et al. 2004).
Despite growing awareness that disease emergence may be
related, at least in part, to ecological change (Woolhouse
and Gowtage-Sequeria 2005; Table 1), there is a notable
paucity of studies to confirm or refute whether, and how,
ecological change plays this role. Many factors contribute
to our poor understanding of the causes and mechanisms
of disease emergence. These include the inherent difficul-
ties of studying ecosystems and wildlife populations, insuf-
ficient funding for ecological research, gaps in baseline
data concerning prevalence of diseases in natural systems
and, most importantly, the limitations of applying tradi-
tional approaches to studying causal inference in large-
scale, complex systems (Allenby 2005).

Reductionist scientific methods separate problems into
elements and then focus on the elements in isolation,
ignoring the complex and often non-linear, hierarchical
effects of changes at one level of organization on another
level, a phenomenon widely recognized in ecology
(Hilborn and Mangel 1997). Reductionist methods alone,

such as individual hypothesis testing, may not be sufficient
for analyzing complex relationships such as global disease
emergence and ecological change. In this paper, we pro-
pose techniques that complement traditional hypothesis
testing and outline a rigorous, interdisciplinary approach to
causal investigation in disease ecology. These techniques
include: epidemiologic causal criteria, strong inference,
causal diagrams, model selection, and triangulation.

� Epidemiologic criteria for establishing causation
in ecological systems

The complex systems studied in epidemiology and ecol-
ogy are often remarkably similar, and the methodologies
used routinely in each discipline, although rarely inte-
grated, are complementary (Anderson 1991). In epidemi-
ologic theory, the ideal method of establishing causality,
called the “counterfactual” definition (Lewis 1973; Rubin
1974), involves theoretical backward time-travel to
remove a causal factor and demonstrate that, in its
absence, the effect, in this case disease emergence, does not
occur. Since this kind of control condition is impossible,
an imperfect proxy must be used. In traditional epidemiol-

Table 1. Recent emerging infectious diseases with proposed ecological drivers for which the associations between
ecological factors and disease emergence are supported with empirical evidence (partial list) 

EID Proposed ecological driver Hypothesized mechanism(s) References

Hantavirus pulmonary Environmental change driven by Increased rainfall facilitated an ecological Glass et al. (2000);
syndrome in North El Niño Southern Oscillations cascade resulting in increased rodent Hjelle and Glass (2000);
America reservoir populations and subsequent Yates et al. (2002)

emergence into human populations.

Nipah virus in Malaysia Agricultural intensification Orchard planting around pig farms Daszak et al. (2006);
increased fruit bat–pig interactions J Pulliam pers comm
while agricultural intensification 
allowed Nipah virus persistence within 
piggeries.

Schistosomiasis in Anthropogenic land-use change Dam building changed river flow regimes, N’Goran et al. (1997);
western Africa (dam building and increased land salinity, and pH, leading to increased Southgate (1997)

with standing water) populations of the snail intermediate host.

Human malaria in the Deforestation Deforestation changed mosquito breeding Vittor et al. (2006)
Amazon basin habitat, leading to an increase in 

abundance of a mosquito species highly 
efficient at maintaining and transmitting 
malaria. Biting rates were hundreds of 
times higher in deforested habitats than 
intact forest.

Lyme disease in the Forest fragmentation Forest fragmentation and urbanization led LoGiudice et al. (2003)
eastern United States to increased numbers of competent 

rodent hosts.

Avian malaria in Hawaii Climate warming Originally linked to the unintentional Freed et al. (2005)
introduction of a novel mosquito vector 
to Hawaii, the range of avian malaria has 
recently expanded to higher altitudes 
due to warmer summertime air 
temperatures, which led to increased 
mosquito breeding at higher elevations.
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ogy, randomization in carefully designed experimental
studies emulates the “counterfactual” method, by ensuring
comparability of experimental units. These are selected so
that control and treatment groups resemble each other in
all conditions except exposure to a proposed causal factor.
Uncontrolled and unmeasured differences among groups
that alternatively explain the outcome, called “con-
founders” in epidemiologic terms, can lead to confusion
when identifying causal factors (Pearl 2000).

In ecological investigations that attempt to establish
causation, study units may be large and complex (such as
entire communities or ecosystems), so that finding compa-
rable replicates for experimentation, or challenging the
system with a treatment, is nearly impossible (Hilborn and
Mangel 1997). For example, dozens of newly-emerging
coral diseases have been recorded in tropical waters
(Richardson 1998) and hypothesized causes include such
diverse factors as nutrient pollution (from runoff or
sewage) and increased sea surface temperature (possibly
linked to climate change; Sutherland  et al. 2004; Bruno  et
al. 2007). In such a case, how does one find comparable
replicates for manipulation, or carry out experiments that
impose control over the risk factors of interest, when the
scale of the question involves global change and disease
emergence throughout entire oceans? One problem in try-
ing to understand complex, tightly coupled human–natural
systems is that the overall resilience of the system usually
cannot be reduced to a linear relationship between a small
set of variables. Furthermore, understanding key variables
may require input from many different disciplines –
anthropological risk factors, for example, may be just as
important as ecological ones in the overall understanding
of disease emergence. Because experimental manipulation
and randomization are not sufficient to answer ecosystem-
level or global-scale questions, ecologists have to comple-
ment experimental work with observational studies when
examining the causal nature of large-scale processes. In
observational studies of disease emergence, where a paucity
of baseline data often leaves researchers with no basis on
which to determine confounders a priori, there may be no
way to ensure comparability between study units.

Similarly, in epidemiology, observational studies are nec-
essary when it is not possible, either practically or ethically,
to impose experimental or controlled challenges on the
study subjects (eg for studying the relationship between
toxin exposure and cancer rates in humans). To use obser-
vational evidence to pass “from [an] observed association to
a verdict of causation”, Sir Austin Bradford Hill published
the following set of nine epidemiologic criteria, which
expanded upon the 1964 US Surgeon General’s report
Smoking and health (US Public Health Service 1964): (1)
strength of association, (2) consistency, (3) plausibility, (4)
coherence, (5) experimental evidence, (6) analogy, (7)
specificity, (8) temporality, and (9) biologic gradient (Hill
1965; Table 2). Hill’s epidemiologic causal criteria offer a set
of tools from epidemiology that can be adapted to benefit
ecological investigations of disease emergence (Table 2).

Hill’s criteria have been used extensively in medicine and
epidemiology to establish causal links between risk factors
and emerging diseases, for example, between smoking and
lung cancer (Hill 1965), abnormal concentrations of cho-
lesterol in the blood and coronary heart disease (Calvert
1994), and the use of post-menopausal hormone replace-
ment and the development of breast cancer in women
(Colditz 1998). Within ecology and related fields, Hill’s
causal criteria have been applied successfully in situations
where it is difficult or impossible to assign treatments to
experimental units (Beyers 1998), such as environmental
impact studies, environmental toxicology investigations,
and risk assessments (eg Woodman and Cowling 1987; Fox
1991; Beyers  et al. 1995; Fabricius and De’Ath 2004).
Fabricius and De’Ath (2004) applied a modified subset of
Hill’s criteria to assess the effects of agricultural runoff on
coral reefs of the Australian Great Barrier Reef, an ecosys-
tem for which the large spatial scale, lack of historical data,
and high natural variability has traditionally prevented the
early detection of ecological change and its causes. The
authors demonstrated that water quality and ecological
indicators such as macro-algal cover and community struc-
ture had an association which (1) was strong and ecologi-
cally important; (2) was detected independently in different
coral reef communities; (3) agreed with established biologi-
cal facts about how corals respond to pollutants; and (4)
demonstrated a dose–response gradient (for most of the
ecological attributes studied). It is important to note (as
Hill emphasized is often the case) that not all of the criteria
were fulfilled. For example, lack of historic data precluded
study of a logical time sequence (although they note that
the criterion had been met in other study systems).
Nevertheless, the framework allowed the authors to synthe-
size and assess multiple and complex sources of data (their
own field study along with results from other regions and
laboratory experiments) and rigorously attribute a causal
link between pollutants and some ecological indicators in a
system where traditional experimental methods alone have
failed to do so.

In the late 19th century, long before Hill’s criteria were
published, Koch’s postulates (Table 3) were adopted by
epidemiologists and medical professionals as a rigid, com-
mon set of guidelines by which to demonstrate that a par-
ticular microbe is the cause of a disease (Evans 1978). For
decades, these guidelines were regarded as a “gold stan-
dard” for establishing causation in disease systems, and
researchers often strive to fulfill them for modern, emerg-
ing infectious diseases. The postulates can be re-inter-
preted into a set of guidelines, applicable to the investiga-
tion of causes of disease emergence (Table 3), providing a
simple, logical baseline which can be used to organize evi-
dence to establish ecological cause-and-effect relation-
ships. It is noteworthy that the first two postulates involve
extensive observational evidence, even though it is typical
for only the last postulate, which involves manipulative
experimental evidence, to be emphasized. Although
Koch’s postulates have endured through time, it is impor-
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tant to recognize the drawbacks inherent in the postulates
which, many argue, preclude their application in most
complex, causal investigations where both infectious and
non-infectious factors may work in concert (Cochran  et
al. 2000). These drawbacks include (1) that the postulates
assume a single-factor/single-outcome relationship and
thus do not account for multifactorial causation, interac-
tion effects, or multiple possible outcomes of a causal fac-

tor, and (2) that the third postulate necessarily requires
control conditions, which may be impossible to achieve in
complex systems. Lastly, as Hill’s criterion of consistency
implies, when investigating complex systems, even Koch’s
postulates should be repeated in a variety of settings before
a generalized causal inference can be reached.

Causal criteria provide a useful framework for evaluat-
ing data collected by different researchers with diverse

Table 2. Hill’s nine criteria (Hill 1965) and their application to investigating causation in disease emergence  

Epidemiologic Example recommendations for disease 
Hill’s criterion explanation emergence studies Caveats

Strength of A causal factor must be Conduct studies to assess the biological Establishing association only in the laboratory, under a 
association correlated with disease and associations between disease incidence, limited set of circumstances, or on a limited spatial scale 

have explanatory power prevalence, and severity, and environmental, may not allow generalization and thus may generate
measured by a correlation host, and pathogen risk factors. misleading conclusions. Demonstrating a strong 
coefficient, relative risk, association through multiple methods, in multiple 
odds ratio, or other scenarios, and at multiple scales is necessary.
statistical method.

Consistency A causal factor must be Establish collaborations among  Consistency can be observed with confounding effects 
associated with disease disease researchers to replicate studies as well as causal factors when correlation between
repeatedly in varying investigating risk factors using  comparable causal factors and confounding variables is strong.
conditions across time and methodologies. Identification and control for confounders is imperative.
space.

Plausibility A causal explanation must Limit inclusion of potential risk factors in Explanations that are plausible are not necessarily true;
make biological sense. regression and correlation analyses and alternative hypotheses need to be considered carefully.

disease models to those with plausible 
causal mechanisms, continually re-evaluating
“plausibility” as new information is gathered.

Coherence A causal explanation should Consider all current knowledge about disease Current knowledge is a shifting baseline.This criterion
be consistent with the as well as ecology and biology of environ- needs continual reconsideration as information 
current body of knowledge. mental and host factors when posing new becomes available and our understanding changes. For 

hypotheses about causation. example,Warren and Marshall’s proposition that a 
gastric spiral bacteria caused gastric ulcers contradicted 
all that was known about the causal mechanisms for 
ulcers as of 1982.They were eventually awarded the
2005 Nobel Prize for their work, which led to new
treatments for ulcers – but only after a long period of 
skepticism (Thagard 1999).

Experimental Manipulation of the causal Establish specific pathogen-free hosts, model A laboratory system is always an imperfect proxy for
evidence variable through laboratory hosts, and/or cell lines in the laboratory or the real ecological system. Hierarchical emergent 

or natural experiment field and design challenge studies to investi- properties and interaction effects in a system can be
should change the outcome. gate cause-and-effect relationships. missed by studying overly simplified versions of the 

system.

Analogy The causal hypothesis under Look to other systems for analogs to each In ecological systems, the complex relationships among
consideration may be com- causal scenario in question. organisms and the environment sometimes preclude 
pared to an analogous comparability with other systems, even if the two 
relationship demonstrated in systems appear superficially similar. For example, in the
another system. US, disease dynamics in east coast and west coast

ecosystems (eg Lyme disease) often differ substantially,
even if landscapes appear to be similar.

Specificity A causal factor should be Use modeling techniques or manipulative The application of this criterion is dependent on the
absent when disease is experiments to remove a suspected causal nature of interacting component causes: “necessary”
absent. factor from the system. If the factor is causal, components must always be present to result in disease

its removal should result in measurable but may not be causal alone, and “sufficient” causes are
decrease in disease occurrence, spread, or combinations of factors that are able to effect disease. It
impact. Identify and take advantage of natural is possible for there to be multiple sufficient causes, and
experiments of this type. thus some truly causal components in this web may not 

adhere to the specificity criterion.

Temporality A causal factor must precede Use time series data to determine the time This criterion is often impossible to prove in ecological
the disease in time. (This is course of events – establish that the factor in systems without good baseline data.
the only criterion that is a question preceded the disease emergence 
logical necessity.) outcome.

Biologic A causal factor should show Collect disease data from areas with varying If interaction effects are present, dose response
gradient a dose–response relationship levels of a potential causal factor (comparable between a causal factor and an outcome may not 

with the disease. in all other ways) to establish a dose–response be consistent across all levels of the interacting variable.
relationship (ie when the factor is present at 
lower levels, disease is less prevalent or  
severe, or vice-versa).
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disciplinary and methodological approaches. They
enforce a logical, consistent, and comprehensive reflec-
tion of multiple lines of evidence. Although it is tempt-
ing to view the epidemiologic causal criteria as a stand-
alone checklist for establishing causation, the criteria
must be used on a case-by-case basis, while being evalu-
ated in conjunction with other rigorous and standardized
scientific methods. However, situations will arise where
multiple competing and plausible hypotheses emerge
from this process. In the following sections, we outline
several scientific methods that can be used in conjunc-
tion with causal criteria to evaluate multiple working
hypotheses, as well as to promote cooperation, increase
efficiency, and minimize bias in causal inference.

� Strong inference, causal diagrams, and model
selection

In the late 1800s, Chamberlain suggested that hypotheses
which propose and test a single explanation for a phe-
nomenon are not suitable for investigating complex sys-
tems, but rather that determining “the measure of partic-
ipation” of each of a multitude of component causes is a
more appropriate goal. He also suggested that, in this
case, the “simultaneous use of a full staff of working
hypotheses is demanded” (Chamberlain 1897). This idea
was later expanded by Platt (1964) and others, and when
combined with the traditional methodological principles
outlined by Popper (1959), evolved into the method of
strong inference. In contrast to traditional hypothesis
testing, strong inference involves devising and testing
multiple working alternative hypotheses that can plausi-
bly account for an observed pattern, and then using infer-
ential methods to decide whether each hypothesis is
rejected or explored further. For example, Kilpatrick et al.
(2006) explored multiple hypotheses for how highly
pathogenic H5N1 avian influenza spreads between coun-
tries, including trade in poultry and wild birds and the
movements of migratory birds. Their analyses demon-
strated that current American surveillance plans – based
on the hypothesis that H5N1 would enter the US with
migratory birds from Siberia (US Department of the

Interior 2006) – would probably fail to detect the intro-
duction of H5N1 into the country in time to prevent its
spread to domestic poultry. Kilpatrick et al. (2006) sug-
gested, using strong inference, that the highest risk of
H5N1 introduction to the western hemisphere would be
through the trade in poultry, with subsequent spread to
the US through migratory birds from countries such as
Canada, Mexico, and Brazil. 

The strong inference approach has not been widely used
in disease-related ecological or epidemiological research, due
to both the conventions of traditional hypothesis testing
and to “confirmation bias” (the bias brought about by focus-
ing only on one’s favorite hypothesis; Chamberlain 1897;
Wynder et al. 1990; Gorman 1992). In practice, looking for
positive evidence for a favored theory can be a useful first
strategy, but can harden into a bias that prevents the evalua-
tion of alternate explanations for patterns that surface as
more data become available (Tweney et al. 1981). Strong
inference can correct for this bias by encouraging the simul-
taneous exploration of multiple alternative hypotheses.

The first step in a strong inference approach is to outline
the entire plausible “hypothesis space” for the system.
This process is dynamic and iterative as data become
available. One rigorous method to outline a hypothesis
space is the generation of a complex causal diagram, a
visual representation of the plausible mechanistic path-
ways, potential interactions, and confounders involved in
a single outcome of interest (Greenland et al. 1999). Fields
as diverse as epidemiology (Joffe and Mindell 2006), envi-
ronmental health (Patz et al. 2004), and crime intelligence
(Schroeder et al. 2003), have used causal diagrams to bring
a logical and comprehensive approach to causal analysis.
The use of causal diagrams not only facilitates communi-
cation and coordination among scientists and managers,
but also often clarifies assumptions, lays a foundation for
analysis, generates testable hypotheses, facilitates explo-
ration of the effects of various management strategies, and
identifies gaps in existing data (Hjorth and Bagheri 2006).
An example of a causal diagram for the recent emergence
of Hendra virus in Australia is presented in Panel 1.

Once a hypothesis space is comprehensively outlined in
a causal diagram, the process of exploring and testing

Table 3. Koch’s postulates (Evans 1978) and their application in disease ecological investigations 

Henle-Koch postulate (paraphrased) Application to disease ecological investigations

(i) The organism must be present when the disease is present. (i) There must be observational evidence that the causal factor is
present where disease emerges, persists, and/or spreads.

(ii) The organism must not be present in other diseases or (ii) There must be observational evidence of reduced risk of disease
normal tissues. emergence, persistence, and/or spread when the causal factor 

is not present.

(iii) The organism must be isolated from tissues in pure culture (iii) Controlled manipulation of the causal factor must be used to 
and be capable of inducing disease under controlled demonstrate that application of the causal factor in isolation
experimental conditions. (ie while controlling for all other differences among treatment

groups) leads to a measurable increase in disease emergence
or spread.
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each of the potential causal links in the system requires
evidence, in the form of empirical or simulated data and
statistical analyses. For example, a strong inference
approach using a statistical framework such as model
selection, via such methods as the information–theoretic
approach (Burnham and Anderson 2002) or structural

equation modeling (Grace 2006), allow multiple causal
models to be compared rigorously and concurrently. For
instance, Ostfeld et al. (2006) used a model comparison
approach to simultaneously test the importance of multiple
variables in predicting Lyme disease risk. Using a 13-year
ecological dataset from Dutchess County, New York, the

Panel 1. A causal diagram approach to examining Hendra virus emergence in Australia 

Hendra virus (HeV), along with several related viruses, has emerged in humans and domestic animals in the
Australasian region in the past decade from fruit bats (Pteropus spp;Mackenzie et al. 2001;Field et al. 2001; Figure 1).
Since these viruses probably have a long history of association with their host, the question arises: what caused
these viruses to emerge into human populations when they did? 

After generation of the entire hypothesis space for an emergence event, evidence must be gathered to support
or refute each plausible causal pathway (Figure 2).Many plausible hypotheses from the causal diagram for HeV have
been determined to be unlikely. For example, genetic analyses revealed that recent pathogen evolution is not likely
to account for the switch to new hosts, because HeV has a stable, highly conserved genome, and all bat isolates
from disparate geographic regions were shown to be genetically identical (Halpin 2000). Surveillance bias (or an
increased detection of disease due to increased surveillance) was shown to be unlikely, because historical samples
of undiagnosed encephalidites in humans yielded no anti-HeV antibodies (P Ketterer unpublished data; P Hooper
unpublished data), and serosurveys of more than 4000 horses, the amplification host of HeV, failed to reveal past
infection with HeV (Ward et al. 1996). Even though most of the hypotheses in the causal diagram have not been
ruled out completely, this systematic approach has narrowed many of the
plausible causes to those associated with the fruit bat hosts.

Recent studies of fruit bat viral ecology have shown that multiple causal
pathways could act in concert to produce HeV emergence. For example,
fruit bat populations have become more urbanized in response to declining
habitat and increased abundance of flowering trees in urban areas (Markus
and Hall 2004; McDonald-Madden et al. 2005), increasing contact, and
therefore potential disease transmission, between fruit bats and horses
(Plowright 2007). Simulation models
suggest that resulting changes in popu-
lation dynamics may produce more
intense HeV epidemics in bats
(Plowright 2007). Additionally, nutri-
tional stress has been linked with
increased prevalence of HeV in fruit
bats, suggesting causal links between
environmental stressors that alter
food resources, such as habitat loss
and climate change, and disease emer-
gence (Plowright  et al. 2008).

These investigations help to iden-
tify and validate potential causal path-
ways, but many questions remain
unanswered. Clarifying the role of
ecological factors in driving HeV
emergence will require a continual
process of acquiring information to
assess hypotheses, and eliminating
them whenever possible. The strong
inference approach used by moving
from the bottom up on the causal
diagram, will eventually examine “par-
ent” variables (such as land use and
climate change), and ultimately lead
to a better understanding of how
ecological change drives disease
emergence.

FFiigguurree  11.. Little red flying fox
(Pteropus scapulatus). This
species is one of a number of fruit
bats that act as a reservoir for
Hendra virus, an EID that has
emerged repeatedly in Australia
since 1994.

FFiigguurree  22.. A causal diagram using a specific disease emergence event – that of Hendra virus in
Australia – to illustrate a strong inference approach to examining causation of an EID. The
figure illustrates the hierarchy of host and environmental factors that must be considered when
investigating disease emergence, ranging from the level of the pathogen through individual hosts,
populations, communities, landscape variables, and even global factors.
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authors demonstrated that the prior year’s abundance of
mice and chipmunks, as well as the abundance of acorns 2
years previously, were highly correlated with cycles of Lyme
disease emergence.

Cumming and Guégan (2006) used structural equation
modeling, along with empirical data, to investigate
trophic cascades affecting tick-borne disease in Africa.
Their results suggest that the abiotic environment influ-
ences tick-borne pathogen diversity primarily through the
effects of the environment on ticks (with changes in tick
diversity influencing changes in tick-borne pathogen
diversity), and secondarily through the direct effects of
abiotic variables on pathogens. Their investigation of
multiple hypotheses simultaneously helped to elucidate
some of the complex potential effects of climate change
on disease emergence, and had useful management impli-
cations for tick-borne diseases in Africa.

While a comprehensive review of model selection tech-
niques is beyond the scope of this article, it is noteworthy
that some of these statistical techniques, such as the infor-
mation theoretic approach (devising a set of biologically
plausible hypotheses and then using Akaike’s Information
Criterion [AIC], or any number of other established crite-
ria, for selection), are increasingly being used, suggesting a
paradigm shift from single-hypothesis testing to multi-

model inference. Such a paradigm shift
changes the goals of statistical modeling from
the unrealistic goal of discovering “truth” or
“full reality” to a more realistic goal of identify-
ing which among a finite set of plausible (but
admittedly imperfect) models offers a good
approximation of the available data and thus a
good basis for inference about the system
(Burnham and Anderson 2002). As the
philosopher David Hume noted, the full suite
of causal factors can never be conclusively
proven (Hume 2000). Thus, the question
arises: how does one decide when to accept
that the evidence is good enough to acknowl-
edge that an ecological factor, or set of factors,
is causal? 

� Triangulation: multiple methodologies
and cross-disciplinary collaborations

A hypothesis supported by multiple kinds of
evidence is stronger than one that is demon-
strable only if a particular technique is used.
Therefore, research investigating the ecologi-
cal drivers of disease emergence should draw
upon many relevant and current methodolo-
gies to investigate causation. A well-estab-
lished concept in the social sciences is a process
analogous to triangulation in surveying, where
multiple lines of evidence are assembled and
compared to continually narrow uncertainty
about a cause-and-effect relationship (Sharp

and Frechtling 1997). This process clearly requires cooper-
ation among diverse groups. For studies of disease emer-
gence, combining multiple methods, such as in vivo studies
(field research), in vitro studies (laboratory investigations),
and modeling, may be particularly powerful in causal infer-
ence (see Figure 3). These methodological approaches can
be combined in an interactive, iterative process, where
data from one methodology feeds other methodologies.
Such “triangulation” can help to remove a bias that stems
from the belief that one method is superior to others
(Dunbar and Fugelsang 2005). 

The process of triangulation uses feedback between var-
ious methods to increase efficiency in the acquisition of
data, generation of hypotheses, and establishment of
causal inference. Field studies enable the detection of
associations between causal factors and disease emer-
gence within the system of interest. However, without
control of complex interactions and confounders, one is
often left with only correlative interpretation, and causal
inference remains beyond reach. Therefore, field research
can and should be complemented by laboratory investiga-
tion, where conditions can be controlled and experimen-
tal groups randomized to minimize the effects of con-
founding. Likewise, field research can suggest factors to
explore in the laboratory, but the sum of the effects in

FFiigguurree  33.. Triangulation is the process of gathering scientific evidence about a
system through a combination of laboratory, field, modeling, and historical
investigations, facilitated by iterative and cross-disciplinary collaboration among
research groups. Field studies suggest which components of the system should be
manipulated in the laboratory and provide data to parameterize computational or
analytical models. Models produce predictions, which can be compared to data
and therefore drive further field and laboratory investigations. To isolate a change
in an ecological system, new information is continually compared with historical
information (in EID studies, special attention is paid to the pre-emergence state).
We propose that the ongoing interaction of these methodologies will improve our
understanding of causal processes in complex systems.

Challenge experiments
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microcosm studies, etc
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system state

Ecological
change
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system are often lacking. This highlights the need for more
surveillance and baseline data in ecological systems.

For emerging disease ecology, the use of multiple meth-
ods for triangulation will probably increase efficiency and
effectiveness in causal investigations, but will require sub-
stantial effort to create cohesive, interdisciplinary collabo-
rations where data (both rigorously acquired and anecdo-
tal), hypotheses, and insights are actively shared. The
importance of this cross-disciplinary cooperation was
recently demonstrated through investigations into Nipah
virus emergence in Malaysia. Despite the complexities of
Nipah virus ecology, its emergence was elucidated using a
triangulation approach, incorporating field, laboratory, and
modeling methods. Field interviews and historical data
analysis demonstrated that an increased planting of fruit
trees on pig farms resulted in closer fruit bat–pig interaction
and subsequent spillover of virus from bats to pigs. Models
incorporating data collected from disease outbreaks, experi-
mental challenge studies, and field investigations, predicted
that changing production practices in Malaysian piggeries
created the conditions necessary for Nipah virus persistence
in pigs, and therefore a longer window of opportunity for
the virus to spread between farms, eventually infecting
many humans. Assessing model fit to data and sensitivity
analyses inspired an iterative process involving further field
data collection, laboratory studies, and model building to
evaluate and re-evaluate model predictions (Daszak et al.
2006; Pulliam et al. 2007; J Pulliam pers comm). This
process required the coordinated efforts of virologists, vet-
erinarians, ecologists, and mathematical modelers, utilizing
many methodologies to understand the multiple compo-
nents of emergence: viral shedding and transmission
dynamics within and between host species, the ecology of
reservoir and amplifier hosts, and the factors involved in
the transmission event from bats to pigs, which eventually
led to a novel outbreak in humans.  

� Conclusions 

Investigations of disease outbreaks are often impeded by
time and funding constraints. As such, an imperfect
trade-off exists between the immediacy of the health
implications of an emerging disease and application of
the best methodological assessments of causation. The
goal to conclusively “prove” causation may therefore be
impractical. A more realistic objective may be to amass
sufficient evidence to implicate ecological (or other
behavioral, sociological, or economic) causes of disease
emergence, in order to inform EID prevention and man-
agement. Determining whether or not ecological drivers
such as climate change, pollution, and ecosystem destruc-
tion underlie emerging infectious diseases can only be
achieved through systematic, interdisciplinary coopera-
tion. By analogy, in a jury trial, multiple lines of evidence
that connect the suspect to the crime scene, the weapon,
and the motive are often required before a verdict can be
reached. This paper offers several methodologies, includ-

real-life ecosystems is often far too complex for laboratory
simulation. Therefore, modeling is an essential tool for
exploring the complex interactions of multiple poten-
tially causal factors. Feedback among these methods is
continual: field and laboratory data enable accurate
model parameterization, and sensitivity analyses per-
formed using models, in turn, suggest parameters that are
critical to measure with precision (and thus require more
field and laboratory investigation). By offering specific
predictions and generating new hypotheses, models can
efficiently direct new lines of study that can be tested in
field or laboratory settings. For example, a triangulation
approach helped to identify chytridiomycosis, an emerg-
ing infectious disease of amphibians, as a cause of moun-
tain yellow-legged frog (Rana muscosa) declines in the
Sierra Nevada of California. After field studies by
Rachowicz et al. (2006) demonstrated higher population
declines and extirpation at infected sites compared to
non-infected sites, and controlled laboratory experiments
confirmed that the pathogen Batrachochytrium dendroba-
tidis could be a necessary and sufficient cause of mortality
in infected R muscosa in a laboratory setting, further field
experiments showed that the progression of chytridiomy-
cosis observed in laboratory and field settings were com-
parable. Briggs et al. (2005) combined data from these and
other studies to parameterize a model that examined the
population level consequences of chytridiomycosis. Their
model suggested that mortality rates measured in field and
laboratory studies could explain the observed population
declines and extinctions. The combination of methodolo-
gies applied in an iterative process – laboratory, field, and
modeling – suggested a causal link more strongly than
could any one method alone.

The goal of triangulation is not to conclusively “prove”
cause-and-effect relationships, but rather to collect suffi-
cient evidence, using all of the available tools and data,
to reach a “verdict” of causation, which can then justify
(and direct) management action. With respect to the
ecological drivers of disease emergence, this means iden-
tifying where there is sufficient evidence to suggest that
the regulation of an ecological factor will mitigate or
reduce disease emergence risk. After such ecological fac-
tors are identified and implicated, adaptive management
can be used with continual monitoring and evaluation
using the triangulation methods, to hone the best strategy
for maintaining or altering complex systems. In adaptive
management, “policies become hypotheses, and manage-
ment actions become the experiments to test those
hypotheses” (Folke  et al. 2005).

Because the process of triangulation proceeds well when
factors that changed prior to disease emergence are identi-
fied, it is helpful to investigate the current state of a system
in its historical context, and thus all results of field, labora-
tory, and modeling research should be evaluated in the con-
text of historical data. One caveat is that, since the need to
understand EIDs is usually only appreciated after a disease
has emerged, quantitative data about the prior status of the
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ing epidemiologic criteria, strong inference, model selec-
tion, and triangulation, for enforcing a rigorous approach
to establishing causation in disease ecology. Ultimately,
cooperative investigations which assemble evidence effi-
ciently and with minimal bias are required to determine
the importance of ecological drivers in disease emer-
gence, so that appropriate management strategies can be
devised before public health suffers and ecosystems are
irreversibly damaged.
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